• Keine Ergebnisse gefunden

Crystal structure of dilithium (nitridolithiate/manganate(I)), Li

N/A
N/A
Protected

Academic year: 2022

Aktie "Crystal structure of dilithium (nitridolithiate/manganate(I)), Li"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Ζ. Kristallogr. NCS 214 (1999) 4 4 5 ^ 4 6 445

© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of dilithium (nitridolithiate/manganate(I)), Li

2

[(Lii_

x

Mn

x

)N], χ = 0.73

J. Klatyk1 and R. Kniep*·1·11

I Max-Planek-Institut für Chemische Physik fester Stoffe, Pirnaer Landstr. 176, D-01257 Dresden, Germany

II Technische Universität Darmstadt, Eduard-Zintl-Institut, Hochschulstraße 10, D-64289 Darmstadt, Germany Received May 20, 1999, transferred to 2nd update of database ICSD in 1999, CSD-No. 409444

Abstract

Li2.27Mno.73N, hexagonal, P6/mmm (No. 191), a = 3.7263(4) Ä, c = 3.8281(4) Ä, V= 46.0 Ä3, Z = 1, R&(F) = 0.025,

wR(F2) = 0.063, Τ = 293 Κ.

Source of material

Single crystals of I^IXLii-jMnViN] (x = 0.73) were obtained by thermal treatment of mixtures of Li7[MnN4] [ 1 ] and Li with molar ratios of 1:1 in Ta crucibles under Ar (1 atm). The mixtures were first heated to 523 Κ (1.3 K/min, 12h) and then heated to 1173K (3 K/min). After reaching the maximum temperature the reaction products were cooled down (3 K/min) to ambient temperature.

Discussion

Li2[(Lio.27Mno.73)N] is a member of a substitution series Li2[(Lii-xMn'x)N] which crystallizes in the Li2[LiN] structure type [2], This general type of substitution series is already known, since the early work of Robert Juza et al. [3], who first reported the existence of ternary compounds Li2[(Lii_/TEI.t)N] (TE = Co, Ni, Cu) from X-ray powder investigations. Reinvestigations in these systems [4, 5], based on single crystal data confirmed the early observation, that the bond lenghts (Lii-jTE^-N decrease with increasing χ parameter. In case of the title compound the bond length (Lii-xMnJ-N (x = 0.73) within the infinite chains is shortened from 193.8(1) pm in Li2[LiN] (x = 0) [2] to 191.4(2) pm. It is interesting to note that the decrease of the bond lengths of (Lii-jMnJ-N with increasing χ parameter is much smaller compared with the isotypic phases Li2[(Lii-xTE'x)N]

(TE1 = Fe [6], Co, Ni, Cu [3-5]).

Table 1. Data collection and handling.

Crystal: brass plate, size 0.2 χ 0.2 χ 0.4 mm Wavelength: Mo Ka radiation (0.71070 A)

μ: 48.43 cm"1

Diffractometer, scan mode: Siemens P4, ω/2θ

28max: 59.6°

N(hkl)measured, N(hkl)miquc: 257,44

C r i t e r i o n f o r /0bs, N(hkl)gt: /obs > 2 cf/obs), 44

N(param),er,ned'· 8

Programs: SHELXL-97 [7], DIAMOND [8]

Table 2. Atomic coordinates and displacement parameters (in Ä2).

Atom Site X y ζ t/ll U22 U33 Un Un Un

Mn lb 0.73(2) 0 0 1/2 0.0305(6) Un 0.0081(6) 0.0153(3) 0 0

Li(l) lb 0.27 0 0 1/2 0.0305 Uu 0.0081 0.0153 0 0

Ν la 0 0 0 0.019(2) U\i 0.009(2) 0.0094(8) 0 0

Li(2) 2c 1/3 2/3 0 0.047(4) Uu 0.040(6) 0.024(2) 0 0

* Correspondence author (e-mail: klatyk@cpfs.mpg.de)

(2)

446 Dilithium (nitridolithiate/manganate(I))

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft (Schwerpunktprogramm "Reaktivität von Festkörpern") for supporting this work.

References

1. Juza, R.; Anschütz, E.; Puff, H.: Die Struktur von L17VN4 und Li7MnN4.

Angew. Chem. 71(1959) 161.

2. Rabenau, Α.; Schulz, Η.: Re-Evaluation of the Lithium Nitride Structure.

J. Less-Common Met. 50 (1976) 155-159.

3. Sachsze, W., Juza, R.: Über Mischkristalle der Zusammensetzung (Li,Co)3N, (Li,Ni)3N und (Li,Cu)3N. Z. Anorg. Allg. Chem. 259 (1948) 278-290.

4. Gudat, Α.: Ternäre und quaternäre Nitride und Nitridometallate in Systemen Lithium-Erdalkalimetall-Übergangsmetall-Stickstoff. Disser- tation, Universität Düsseldorf, Germany 1990.

5. Höhn, P.: Temäre und quaternäre Nitridometallate: Verbindungen in den Systemen Lithium-Erdalkalimetall-Übergangsmetall-Stickstoff.

(Übergangsmetall = Ta, Mo, W, Fe, Co). Dissertation, TH Darmstadt, Germany 1993.

6. Klatyk, J.; Kniep, R.: Crystal structure of dilithium (nitrido- lithiate/ferrate), Li2[Lii-IFei)N], λ = 0.63. Ζ. Kristallogr. NCS 214 (1999) 447-448.

7. Sheldrick, G. M.: SHELXL-97, a program for refining crystal structures.

University of Göttingen, Germany 1997.

8. Brandenburg, K.: DIAMOND (Version 2.1a). Crystal Impact GbR, Germany 1996-1999.

Abbildung

Table 1. Data collection and handling.

Referenzen

ÄHNLICHE DOKUMENTE

Katundu stressed that governments must ensure that various technical and policy aspects are addressed, including identification and protection of national critical

It is suspected that the position (a) is not occupied by As but by a different kind of atom, since the dis- tances from the position (a) to the surrounding S atoms are too long

Binary transition metal (T ) stannides of nickel and copper have intensively been studied with respect to their solderability for electronic devices and for use as electrode

Dur- ing the synthesis of the binary phase from a sample with the initial composition 5La : 3Ir we obtained well- shaped single crystals of the La 3 Ir 2 phase initially cor-

Numerous ternary fluorides of the formula type A 2 MF 6 (A = alkali metal, M = main group element or transition metal) with larger alkali ions are known. The crystal chemistry of

These refinements showed, that one site in each compound is fully occupied with yttrium or lutetium, while one or even the two other sites showed mixing of the rare earth metals..

In the iridium based system the new equiatomic binary magnesium compound IrMg with a very complex crystal structure (Pearson code oC304) was discovered [5]. 37 and 3.36)

Previous research indicates that benefits of sprouting may be negated by net DM loss from sprouting coupled with no significant improvement in nutrient concentrations or