• Keine Ergebnisse gefunden

Shifts of Attention During Spatial Language Comprehension

N/A
N/A
Protected

Academic year: 2022

Aktie "Shifts of Attention During Spatial Language Comprehension"

Copied!
56
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Universität Bielefeld Language & Cognition Group

Shifts of Attention During Spatial Language Comprehension

A Computational Investigation

Thomas Kluth1, Michele Burigo1, and Pia Knoeferle2

1: Language & Cognition Group, CITEC (Cognitive Interaction Technology Excellence Cluster), Bielefeld University, Bielefeld, Germany

2: Department of German Language and Linguistics, Humboldt University, Berlin, Germany

February 24, 2016

(2)

Universität Bielefeld Language & Cognition Group

Motivation

// Remove the spider!

X X X

X X X

image sources:

robot: by Mamirobothk (CC BY-SA 2.5,https://commons.wikimedia.org/w/index.php?curid=25084931) spider: by L. Shyamal (CC BY-SA 3.0,https://commons.wikimedia.org/w/index.php?curid=1309920)

(3)

Universität Bielefeld Language & Cognition Group

Motivation

// Remove the spider!

X X X

X X X

image sources:

robot: by Mamirobothk (CC BY-SA 2.5,https://commons.wikimedia.org/w/index.php?curid=25084931) spider: by L. Shyamal (CC BY-SA 3.0,https://commons.wikimedia.org/w/index.php?curid=1309920)

(4)

Universität Bielefeld Language & Cognition Group

Robots comprehending human (spatial) language

robot needs to know what you mean by “left”

→ implement human-like processes

But: How do humans comprehend spatial prepositions?

(5)

Universität Bielefeld Language & Cognition Group

Robots comprehending human (spatial) language

robot needs to know what you mean by “left”

→ implement human-like processes

But: How do humans comprehend spatial prepositions?

(6)

Universität Bielefeld Language & Cognition Group

Robots comprehending human (spatial) language

robot needs to know what you mean by “left”

→ implement human-like processes

But: How do humans comprehend spatial prepositions?

(7)

Universität Bielefeld Language & Cognition Group

Previous Research

// Logan and Sadler (1996, experiment 2)

X O

The X is above the O.

(8)

Universität Bielefeld Language & Cognition Group

Previous Research

// Logan and Sadler (1996, experiment 2)

X X X X X X X

X X X X X X X

X X X X X X X

X X X O X X X

X X X X X X X

X X X X X X X

X X X X X X X

(image source: Logan & Sadler, 1996, p. 510)

(9)

Universität Bielefeld Language & Cognition Group

Previous Research

// Logan and Sadler (1996, experiment 2)

X X X X X X X X X X X X X X X X X X X X X X X X O X X X X X X X X X X X X X X X X X X X X X X X X

(image source: Logan & Sadler, 1996, p. 510)

(10)

Universität Bielefeld Language & Cognition Group

Previous Research

// Regier and Carlson (2001, exp. 5 & 6)

(image sources: Regier & Carlson, 2001, p. 287-288)

(11)

Universität Bielefeld Language & Cognition Group

Proximal and center-of-mass orientation

proximal orientation

center-of-mass orientation

(image adapted from Roy, 2005, p. 390)

(12)

Universität Bielefeld Language & Cognition Group

AVS Model

// Regier and Carlson (2001)

spatial preposition: above

reference object: RO located object: LO

cognitive model:

Attentional VectorSum (AVS) model (Regier & Carlson, 2001)

→ acceptability rating

(13)

Universität Bielefeld Language & Cognition Group

AVS Model

// Regier and Carlson (2001)

spatial preposition: above

reference object: RO located object: LO

→ AVS model

→ acceptability rating

(14)

Universität Bielefeld Language & Cognition Group

AVS Model

// Regier and Carlson (2001)

spatial preposition: above

reference object: RO located object: LO

→ AVS model→ acceptability rating

(15)

Universität Bielefeld Language & Cognition Group

AVS Model

// Regier and Carlson (2001)

spatial preposition: above

reference object: RO located object: LO

→ AVS model→ acceptability rating

AVS model assumes shift of attention from RO to LO

(16)

Universität Bielefeld Language & Cognition Group

AVS Model

// Regier and Carlson (2001)

spatial preposition: above

reference object: RO located object: LO

→ AVS model→ acceptability rating

AVS model consists of 1. angular component

2. height component

(17)

Universität Bielefeld Language & Cognition Group

AVS Model

// Angular Component

ai = exp −di

λ·σ

attention(%)

(18)

Universität Bielefeld Language & Cognition Group

AVS Model

// Angular Component

# » direction= X

i∈RO

ai·vi

attention(%)

(19)

Universität Bielefeld Language & Cognition Group

AVS Model

// Angular Component

Pai·vi

δ

g (δ) =slope·δ+y-intercept

(20)

Universität Bielefeld Language & Cognition Group

AVS Model

// Height Component

height(yLO) =

sig(yLOhightop,highgain) + sig(yLOlowtop,1) 2

above(LO,RO) = g (δ)·height(yLO)

height

(21)

Universität Bielefeld Language & Cognition Group

rAVS Model

// Motivation

AVS assumes shift of attention from RO to LO

(22)

Universität Bielefeld Language & Cognition Group

(image source: Roth & Franconeri, 2012, p. 5)

(23)

Universität Bielefeld Language & Cognition Group

(image source: Roth & Franconeri, 2012, p. 5)

(24)

Universität Bielefeld Language & Cognition Group

(image source: Roth & Franconeri, 2012, p. 5)

(25)

Universität Bielefeld Language & Cognition Group

Visual World Paradigm

// Burigo and Knoeferle (2015)

(image source: Burigo & Knoeferle, 2015, p. 6)

(26)

Universität Bielefeld Language & Cognition Group

Visual World Paradigm

// Burigo and Knoeferle (2015)

(image source: Burigo & Knoeferle, 2015, p. 6)

(27)

Universität Bielefeld Language & Cognition Group

Visual World Paradigm

// Burigo and Knoeferle (2015)

(image source: Burigo & Knoeferle, 2015, p. 6)

(28)

Universität Bielefeld Language & Cognition Group

Visual World Paradigm

// Burigo and Knoeferle (2015)

(image source: Burigo & Knoeferle, 2015, p. 6)

(29)

Universität Bielefeld Language & Cognition Group

rAVS Model

// Main Idea

AVS model

=⇒

reversed AVS model

(30)

Universität Bielefeld Language & Cognition Group

rAVS Model

// Details

δ

F

C proximal

orientation

center-of-mass orientation L1

L2

C D2

D1

above(LO,RO) = g (δ)·height(yLO)

D = (# »

LC + (−α·distrel.+ 1)·# »

CF if(−α·distrel.+ 1)>0

C else

(31)

Universität Bielefeld Language & Cognition Group

rAVS Model

// Details

δ F

C proximal

orientation

center-of-mass orientation L1

L2

C D2

D1

D = (# »

LC + (−α·distrel.+ 1)·# »

CF if(−α·distrel.+ 1)>0

C else

(32)

Universität Bielefeld Language & Cognition Group

rAVS Model

// Details

δ

F

C proximal

orientation

center-of-mass orientation

L1 L2

C D2

D1

D = (# »

LC + (−α·distrel.+ 1)·# »

CF if(−α·distrel.+ 1)>0

C else

(33)

Universität Bielefeld Language & Cognition Group

rAVS Model

// Details

δ

F

C

proximal orientation

center-of-mass orientation

L1 L2

C D2

D1

D = (# »

LC + (−α·distrel.+ 1)·# »

CF if(−α·distrel.+ 1)>0

C else

(34)

Universität Bielefeld Language & Cognition Group

rAVS Model

// Relative Distance

relative distance= |LO,P|x

ROwidth +|LO,P|y ROheight

(35)

Universität Bielefeld Language & Cognition Group

Method

// Model Comparison

free parameters:

slope,intercept,highgain, λ

free parameters:

slope,intercept,highgain, α

(36)

Universität Bielefeld Language & Cognition Group

Method

// Model Comparison

Regier and Carlson (2001): 7 experiments

→10 ROs, 337 LOs

input (ROs, LOs)

AVS & rAVS 4 free parameters

empirical ratings

modelratings

RMSE = v u u t 1 n

n

X

i

(dataimodelOuti)2

(37)

Universität Bielefeld Language & Cognition Group

Method

// Model Comparison

Regier and Carlson (2001):

7 experiments

→ 10 ROs, 337 LOs

input (ROs, LOs) AVS & rAVS 4 free parameters

empirical ratings

modelratings

RMSE = v u u t 1 n

n

X

i

(dataimodelOuti)2

(38)

Universität Bielefeld Language & Cognition Group

Method

// Model Comparison

Regier and Carlson (2001):

7 experiments

→ 10 ROs, 337 LOs

input (ROs, LOs) AVS & rAVS 4 free parameters

empirical ratings

modelratings

RMSE = v u u t 1 n

n

X

i

(dataimodelOuti)2

(39)

Universität Bielefeld Language & Cognition Group

Method

// Model Comparison

Regier and Carlson (2001):

7 experiments

→ 10 ROs, 337 LOs

input (ROs, LOs) AVS & rAVS 4 free parameters

empirical ratings

modelratings

RMSE = v u u t 1 n

n

X

i

(dataimodelOuti)2

(40)

Universität Bielefeld Language & Cognition Group

Results

// Goodness of Fit, Regier and Carlson (2001, all experiments)

100%-normalizedRMSE

GOF

84.0 86.0 88.0 90.0 92.0 94.0 96.0 98.0 100.0

AVS rAVS

(41)

Universität Bielefeld Language & Cognition Group

Method

// Problems of GOF

(image source: Pitt & Myung, 2002, p. 424)

(42)

Universität Bielefeld Language & Cognition Group

Method

// Simple Hold-Out (Schultheis, Singhaniya, & Chaplot, 2013)

(43)

Universität Bielefeld Language & Cognition Group

Method

// Simple Hold-Out (Schultheis, Singhaniya, & Chaplot, 2013)

(44)

Universität Bielefeld Language & Cognition Group

Results

// GOF and SHO, Regier and Carlson (2001, all experiments)

100%-normalizedRMSE

SHOGOF

91.0 91.5 92.0 92.5 93.0

AVS rAVS

(45)

Universität Bielefeld Language & Cognition Group

Conclusion

rAVS model: a modification of the AVS model that integrates recent findings (Burigo & Knoeferle, 2015; Roth &

Franconeri, 2012)

→ rAVS is less complex than AVS

both models perform equally well on the data from Regier and Carlson (2001)

→ simulations do not favor any of the two models both directionalities of the

attentional shift are equally well supported

(46)

Universität Bielefeld Language & Cognition Group

Conclusion

rAVS model: a modification of the AVS model that integrates recent findings (Burigo & Knoeferle, 2015; Roth &

Franconeri, 2012)

→ rAVS is less complex than AVS

both models perform equally well on the data from Regier and Carlson (2001)

→ simulations do not favor any of the two models both directionalities of the

attentional shift are equally well supported

(47)

Universität Bielefeld Language & Cognition Group

Conclusion

rAVS model: a modification of the AVS model that integrates recent findings (Burigo & Knoeferle, 2015; Roth &

Franconeri, 2012)

→ rAVS is less complex than AVS

both models perform equally well on the data from Regier and Carlson (2001)

→ simulations do not favor any of the two models both directionalities of the

attentional shift are equally well supported

(48)

Universität Bielefeld Language & Cognition Group

Conclusion

rAVS model: a modification of the AVS model that integrates recent findings (Burigo & Knoeferle, 2015; Roth &

Franconeri, 2012)

→ rAVS is less complex than AVS

both models perform equally well on the data from Regier and Carlson (2001)

→ simulations do not favor any of the two models

both directionalities of the

attentional shift are equally well supported

(49)

Universität Bielefeld Language & Cognition Group

Conclusion

rAVS model: a modification of the AVS model that integrates recent findings (Burigo & Knoeferle, 2015; Roth &

Franconeri, 2012)

→ rAVS is less complex than AVS

both models perform equally well on the data from Regier and Carlson (2001)

→ simulations do not favor any of the two models both directionalities of the

attentional shift are equally well supported

(50)

Universität Bielefeld Language & Cognition Group

Future Work

experiment to distinguish the models

extend model with

the LO timing

functionality of objects

implement into technical systems

C++source code available under an open source license at Kluth (2016)

(51)

Universität Bielefeld Language & Cognition Group

Future Work

experiment to distinguish the models

extend model with the LO

timing

functionality of objects

implement into technical systems

C++source code available under an open source license at Kluth (2016)

(52)

Universität Bielefeld Language & Cognition Group

Future Work

experiment to distinguish the models

extend model with the LO timing

functionality of objects

implement into technical systems

C++source code available under an open source license at Kluth (2016)

(image source: Hustvedt, CC BY-SA 3.0,https://

commons.wikimedia.org/w/index.php?curid=5743799)

(53)

Universität Bielefeld Language & Cognition Group

Future Work

experiment to distinguish the models

extend model with the LO timing

functionality of objects

implement into technical systems

C++source code available under an open source license at Kluth (2016)

(images adapted from: Hörberg, 2008, p. 200)

(54)

Universität Bielefeld Language & Cognition Group

Future Work

experiment to distinguish the models

extend model with the LO timing

functionality of objects

implement into technical systems C++source code available under an open source license at Kluth (2016)

(image source: Mamirobothk, CC BY-SA 2.5,https://

commons.wikimedia.org/w/index.php?curid=25084931)

(55)

Universität Bielefeld Language & Cognition Group

Thank you for your attention!

References

Burigo, M., & Knoeferle, P. (2015). Visual attention during spatial language comprehension.PloS ONE,10(1), e0115758. doi: 10.1371/journal.pone.0115758

Hörberg, T. (2008). Influences of form and function on the acceptability of projective prepositions in swedish.

Spatial Cognition & Computation,8(3), 193–218. doi: 10.1080/13875860801993652 Kluth, T. (2016).A C++ Implementation of the reversed Attentional Vector Sum (rAVS) model.Bielefeld

University. doi: 10.4119/unibi/2900103

Logan, G. D., & Sadler, D. D. (1996). A computational analysis of the apprehension of spatial relations. In P. Bloom, M. A. Peterson, L. Nadel, & M. F. Garrett (Eds.),Language and Space(pp. 493–530). The MIT Press.

Pitt, M. A., & Myung, I. J. (2002). When a good fit can be bad.Trends in Cognitive Sciences,6(10), 421–425.

Regier, T., & Carlson, L. A. (2001). Grounding spatial language in perception: An empirical and computational investigation.Journal of Experimental Psychology: General,130(2), 273–298. doi:

10.1037//0096-3445.130.2.273

Roth, J. C., & Franconeri, S. L. (2012). Asymmetric coding of categorical spatial relations in both language and vision.Frontiers in Psychology,3(464). doi: 10.3389/fpsyg.2012.00464

Roy, D. (2005). Grounding words in perception and action: computational insights.Trends in Cognitive Sciences, 9(8), 389–396.

Schultheis, H., Singhaniya, A., & Chaplot, D. S. (2013). Comparing model comparison methods. InProceedings of the 35th Annual Conference of the Cognitive Science Society(pp. 1294 – 1299). Austin, TX: Cognitive Science Society.

(56)

Universität Bielefeld Language & Cognition Group

RMSE

// GOF and SHO, Regier and Carlson (2001, all experiments)

100%-normalizedRMSE

SHOGOF

0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73

AVS rAVS

Referenzen

ÄHNLICHE DOKUMENTE

Die Auswirkungen des Klimawandels auf die zukünftige Schneedeckendauer und -ausdehnung wurde im Rahmen des ACRP-Projekts CC-Snow (CC-Snow, 2013 a, b) exemplarisch für die

Da es derzeit keine gesicherten Aussagen über eine Zunahme von Starkregenereignissen gibt (vgl. BMLFUW, 2011), kann auch keine Aussage über eine eventuelle Zunahme

Innerhalb der intakten Blockgletscher kann zwischen aktiven (verbreiteter Permafrost und rezente Bewegung) sowie inaktiven (verbreiteter Permafrost jedoch ohne rezente

Norwegen sowie Teile von Finnland), andererseits konti- nentaleuropäische Regionen mit hoher Anpassungskapa- zität (Frankreich, Deutschland, Dänemark, Niederlande mit Ausnahme

All over, we see source code and the means of separating concerns as being similar to the different theories of how categories are arranged.. Our main point is that means of

Model: an abstract representation of a system created for a specific purpose.... A very popular model:

Model: an abstract representation of a system created for a specific purpose.... A very popular model:

[r]