• Keine Ergebnisse gefunden

Optical properties of gold nanoparticles decorated with furan-based diarylethene photochromic molecules

N/A
N/A
Protected

Academic year: 2022

Aktie "Optical properties of gold nanoparticles decorated with furan-based diarylethene photochromic molecules"

Copied!
7
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Optical properties of gold nanoparticles decorated with furan-based diarylethene photochromic molecules

S.V. Snegir

a,b,

*, A.A. Khodko

c

, D. Sysoiev

d

, E. Lacaze

b

, O. Pluchery

b

, T. Huhn

d

aChuikoInstituteofSurfaceChemistry,NationalAcademyofSciences,Kyiv,Ukraine

bInstitutdesNanosciencesdeParis,SorbonneUniversitésUPMCUnivParis-06,CNRS-UMR7588,4placeJussieu,Paris,France

cInstituteofPhysics,NationalAcademyofScience,Kyiv,Ukraine

dUniversityofKonstanz,Konstanz,Germany

Keywords:

Photo-switching Cyclizationdynamics Furan-baseddiarylethene Goldnanoparticles Femtosecondpump-probe UV/visiblespectroscopy SEM

ABSTRACT

Theopticalpropertiesofthephotochromic1,2-bis(2-methyl-5-((4-mercaptophenyl)ethynyl)-furan-3-yl) perfluorocyclopentene(YnPhT)covalentlyattachedtogoldnanoparticles(AuNP)(d=171nm)were studiedinairatambientconditions.Thereversiblering-opening/closingphotochromicreactionsof moleculesattachedonAuNPsurfacecanoccurundersimilarlightirradiationconditionsasobservedfor freemoleculesinethanolicsolution.Anunexpectedblueshiftofthelocalsurfaceplasmonresonance band(LSPR)ofAuNPcoveredbyphotochromicmoleculeswasobservedafterUVlightirradiation.A reverseredshiftofLSPRwas observedwhentheAuNPare illuminatedbyvisible light.Moreover, increasedamplitudeoftheLSPRwasobservedforAuNPcoveredwithmoleculesintheclosed-ringstate.

Theseobservationsarediscussedinviewofmolecule–AuNPinteractions.Theseinteractionsdecelerate thekineticsofthering-closingreactionofYnPhTonAuNPsurfacesunderUVlightirradiation.

1.Introduction

Thereisagrowinginteresttowardmolecularswitchesthatcan bereverselytriggeredbetweentwowell-definedformsbyexternal opticaland/orelectricalstimuliduetotheirpotentialuseasultra- compact3Ddatastorage[1,2],heavymetalsensors[3–5],elements ofnano-scaledmolecular-basedflexibledevices[6,7]andmolecu- lar machines [8,9].To be implementedin a realdevice,photo- responsiveorganicmoleculeshavetodisplay:long-termthermal stability,goodfatigueresistance,highlysensitiveresponsetolight irradiation,non-destructivereadoutcapabilityandsmallstructur- alchangesduringswitching.Amongthebeststudiedphotochro- mic molecules i.e. stilbenes, spiropyrans, azobenzenes and diarylethenes (DAE), the DAE are closest to meet the above requirements. Moreover, open (OF) and closed form (CF) DAE display strong variation of electric conductance [2] when contactedbymetallicelectrodes,makingthemperfectcandidates for development of optically driven molecular switches, an intenselyinvestigatedfieldduringrecentyears[10–12].However, further progress in design of DAE-based molecular electronics

requiresadetailedunderstandingofthephoto-switchingmecha- nism of hybrid (molecules–metallic contact) systems and the factorscontrollingthem.

Several attempts were made to combine photochromic propertiesof DAEwithmetallic, mainlygold,flat surfaces[13– 19] or nanoelectrodes (nanoparticles) [20–27] toyield hybrid materialswithphotochromicpropertiescloselyresemblingthose ofDAEmoleculesinsolution.Inconsequence,twomainchallenges wereidentified: Thefirstoneis theinhibition ofphotochromic properties (quenching) of DAE covalently attached to metallic electrodesduetostronghybridizationofmolecularorbitals(MO) inclosevicinitytothegoldsurface[13,15,20,26,28–31].Thiscanbe overcome by using a short, insulating alkyl chain as linker to decouplethe photochromic corefromthesurface electrons i.e.

reducing molecular

p

-electron interaction with surface atoms [32]. However, these alkyl groups are highly resistive thus diminishing applicability of the resulting hybrid system as molecularelectronicselement.Insomestudiesthiswasovercome by adapting the linking groups to the electrode material. This efficientlyseparates(decouples)theMOsoftheelectronicsystem fromtheelectrodesthusenablingatleastthering-closingreaction [2,18,32].

The second challenge arises from coupling the plasmon resonanceoftheelectrodewiththeMOofDAE.Localizedsurface plasmon resonsance (LSPR) is a collective excitation of the

*Corresponding authorat: Chuiko Institute of SurfaceChemistry, National AcademyofSciences,Kyiv,Ukraine.

E-mailaddress:ssnegir@gmail.com(S.V. Snegir).

Konstanzer Online-Publikations-System (KOPS)

URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-1ns4qvpnjrp6b5

Erschienen in: Journal of Photochemistry and Photobiology A: Chemistry ; 342 (2017). - S. 78-84 https://dx.doi.org/10.1016/j.jphotochem.2017.04.003

(2)

electronsofmetallicnanoparticlesinducedbytheelectricfieldof anoptical wave.For gold nanoparticles,theLSPR is excitedby visible light and might be in the same energy range as the electronictransitionsimpliedintheMO.Therefore,sinceLSPRand thephotochromicpropertiesof DAEoccursin thesameenergy range,weanticipatesomemutualinfluencessuchaschangesin theswitchingrate[31].Toaddressthesetwoproblems,specific structured functional groups have to be proposed and imple- mented in the DAE. Unfortunately, so far there is no clear understanding of what class of chemical structures might be suitabletobindphotochromicmoleculesonmetallicelectrodes without degrading their optically induced reactions. Different linkinggroupsweremonitoredforthispurposeandinadditionto ring-closing,thereversering-openingevenwithsomeenhance- mentofphotochromicreactiononAuNPwasobservedin some studies[24,25,27,31].

In one previous study we focused on the synthesis of new sulphur-free photochromic molecules based on the bisfuryl- perfluorocyclopentene core connected to different anchoring groupsvia

p

-extendedwires[33].Theinfluenceoftheanchoring groupon theelectrical conductance througha single-molecule junctionandthealignmentoftheMOstotheFermienergylevelof gold electrodes were systematically studied in a gold-break junctionsetup[34,35].Fromthis dataitwasconcludedthatfor rathershortmoleculesthenatureoftheanchoringgroupandside chain(i.e.

p

-extendedwires)isdominating thelevelalignment

withrespecttotheFermi-leveloftheelectrodematerial.Moreover, we couldalso showthat DAE withdifurylethene-based photo- chromiccoreandsuitableanchoringgroupsswitchfromtheOFto theCFwithinthepicosecond [36]or evensub-picosecond [37]

time-regime. Using these findings, flexible molecular devices basedontheYnPhTDAEweredesignedand showed reversible conductanceswitching(Fig.1)[10,38].Apparently,YnPhTmole- cules sandwichedbetweena macroscopicnon-symmetricgold/

reduced–grapheneoxideelectrodepairpreservedtheiroptically inducedreversibleswitchingbehaviour.However,innano-scaled oreven uni-molecular electronicdevices the drasticallylimited numberofphotochromicmoleculeshastobedirectlycontactedby the nano electrodes which results in different electronic and photophysicalproperties compared tothemesoor evenmacro scale[39].

InthepresentstudyweuseAuNPtomodelthesurfaceofgold nano-electrodesandstudiedopticalpropertiesofYnPhTphoto- chromic molecules covalently attachedto them. Our aimis to monitorthelightinducedswitchingofanassemblyofDAEona nanoscaledmodelofagoldelectrodeandtocompareitwiththe reversible switchingof freeYnPhT insolution.Furthermorewe wanttoidentifythecorrelationsbetweencollectiveswitchingof the ensemble and theprocesses undergone bya single YnPhT moleculebetweentwogoldnano-electrodesinmolecularbreak junctionsetup[35].AsfortheUV-inducedring-closingreactionwe show that the molecule degradation is attenuated on gold nanoparticles.Thiswillprovidesomeadvicetodevelopdifferent approachesthatdriveorfacilitatetheelectro-opticalpropertiesof moleculesanddevicesontheirbasisatambientconditions.

2.Experimentalsection

Synthesisandpurificationoftheacetyl-protectedYnPhTwere performedaccordingtoref[35].Inallexperimentsconductedin thepresenceofAuNPtheacetylprotectinggroupwas removed priortousebyadditionofadropofammoniatothesolutionof YnPhTtoliberatethefree-SHformofYnPhT.

The irradiation of YnPhT in ethanolic solution by UV light (

l

=250–370nm)leadstoa6

p

-electrocyclizationwithconcomi- tantformationof theCF(Fig.1).Duringirradiationthecolorof YnPhT solution gradually changes from transparent to violet.

Consequently, the photoinduced cyclization reaction can be monitored by pump-probe spectroscopy by probing the corre- sponding CF absorption band in the visible range (discussed below).

Synthesisofgoldnanoparticleswasconductedaccordingtothe Turkevich protocol [40–43]. An aqueous solution of HAuCl4 (2.5104molL1) was heated to the boiling point in an Erlenmeyerflask(20mL).Thenanaqueoussodiumcitratesolution (1mL, 1.7102molL1) was added with vigorous magnetic stirring. The colour of the solution quickly changed from transparent to light-violet (2min) and finally reached a stable redcolour5minaftercitrateaddition.Thisaqueoussolutionof stabilized gold nanoparticles exhibits a peak of absorbance at

l

max=520nm (Fig. 2a) in the absorption spectra. This peak

correspondstotheLSPRband.Ananalysisofthescanningelectron microscopy(SEM) images (insetofFig.2a)confirmsthat AuNP havesphericalshapewithaveragediameterofabout171nm.

The resultantsolutionwas stored at 4C to avoidnanoparticle aggregation.AllchemicalswerepurchasedfromAldrichandused asreceived.Glassslides(1015mm2)werecutfromcommercially available cover slips (SCHOTT). The flatness of thesurface was controlledwithatomicforcemicroscopy(AFM)measurementsand theaverageroughnessdidnotexceed3nmpeaktopeak.These slides werecarefullycleaned severaltimesin pureethanol and driedinaflowofdrynitrogen.Finally,theywereimmersedina methanol solution of (3-aminopropyl)-triethoxysilane (APTES) (1%). After 3h the slides were sonicated three times in fresh methanoltoremoveallphysisorbedAPTES.Thepre-coatedglass slidesweresubsequentlyimmersedinanaqueoussolutionofthe AuNP[44].Theimmersingtimeusedinthecurrentexperiment was 20min. These slides covered by AuNP were finally rinsed severaltimeswithpurewater(18M

V

)anddriedinastreamofdry

nitrogen.SEMrevealsthatAuNParerandomlydispersedonthe surfacewithcoverageofabout100AuNPper

m

m2(Inset,Fig.2b).

The colour of the glassbecame light pinkdue to theplasmon absorptionoftheAuNPunderambientlight.Theopticalspectrum obtainedin transmission,exhibits theLSPRat a wavelengthof

l

=5211nm (Fig. 2b). The surface coverage of AuNP was controlledbytheimmersion-timeofglassslidesinthecolloidal watersolutionofAuNP.Immersiontimewaschosentoobtaina Fig.1.TemporalevolutionofabsorptionspectraofYnPhTmoleculesinethanol

showingthereversibletransitionbetweenOF$CFuponirradiationwitheither visiblelightorUVirradiationwithl=254nm.Insetshowstructuralchangesin hexaflurocyclopentenephotochromiccoreofYnPhTduringultraviolet/visible(UV/

visible)lightirradiation.

(3)

coating-density inwhichLSPRofneighboringgoldAuNPdonot interfere.Thereforenoadditionallightabsorptionabove530nm wasobserved(Fig.2b.)

FunctionalizationoftheAuNPwiththeYnPhTmoleculeswas achievedbyimmersionofthecoverslidesinanethanolicsolution ofdeprotectedYnPhT(1.2104molL1)for12h.Afterwardsthe coverslideswerecleanedwithcopiousamountsoffreshethanol anddriedinastreamofdrynitrogen.

The switching of YnPhT was triggered by UV or visible irradiation. A Pen-Ray1 lamp (UVP, USA) with

l

max=254nm (0.75

m

Wcm2)wasusedtoinducering-closingreactionwhilea Schott KL 1500 LCD lamp (P=150W, T=3300K) was used for reversereaction.TheAFMcharacterizationsofAuNPattachment wasperformedbyaBrukerMultimodeapparatusoperatinginthe PeakForce1 mode at ambient atmospheric conditions. UV–vis spectra were recorded using a CARY 5000 spectrometer in transmissiongeometryatnormalincidencewithinthewavelength range

l

=400–700nm. For measuring the modulation of the absorbancespectrawhenthemoleculeisswitched,thestabilityof the sample holder is critical. Therefore the UV or visible irradiations were carried out directly in the spectrometer compartmentwithoutmovingofthesample.TheUVandvisible lightsourcesweresystematicallyplacedat2cmdistancefromthe samples.

SEMof glasssurface coveredbyAuNPwas performedusing ZeissUltra55.TEMofAuNPdepositedfromwatercolloidalsolution onacarbonsurfacewasperformedusingZeissLibra120.

The formation of CF on the picosecond time-scale was investigated by femtosecondtransient absorptionspectroscopy.

For theseexperiments,YnPhTwithconcentrationof c=5105 molL1 in ethanol was used. To avoid accumulation of CF molecules, thesolutionwaspumpedthrougha quartzflow-cell with2mmopticalpathandabuffervolumebyaperistalticpump with 2mL/sflowrate. We irradiated thesolution in thebuffer volumebybroadvisibleradiation(SchottKL1500LCD,P=150W), which caused thereversering-opening reaction.This approach allowedrefreshingofthesolutioninthecellwithOFmoleculesby inducing CF!OFtransformation.Asfor theopticalsetup,a Ti:

Sapphirelaser(Coherent,USA)wasusedtoproducefemtosecond pulses(E=0.5mJ,t=150fs,

l

=800nm,

y

=1kHz).Thisbeamwas

splitin two:thepumpbeaminitiatedtheringclosingreaction, whiletheprobebeamtrackedchangesoftheopticaldensityonthe femtosecondtimescale.Thethirdharmonicgenerationwasusedto generate laser pulses with following parameters E=0.4

m

J,

t=150fs,

l

=266nm,

y

=250Hz. As probe radiation, the super-

continuum(SC,

l

=540–600nm),generatedinanAl2O3crystalby

femtosecondpulsesat800nm,wasused.TheSCbeamwassplit intoprobeandreferencebeamsbeforeenteringthesample.Both beamswererecordedbya multichannel spectrograph(Imaging SpectrographSP-2500i,Acton,USA).Inordertodeterminethetime delay,theapproximatezeropositionwas obtainedfrommixing fundamental

l

=800nmandSCinthenonlinearBBOcrystal.Inour

dataandfiguresthezeropointpositionwaschosenasthestarting point of absorption changes. To correct SC fluctuations, the transient absorbance spectra were obtained by comparing the probeandthereferencespectrafordifferenttimedelays,andthen, thegroup-velocitydispersionofSCpulsewascorrectednumeri- callyatallobtainedtransienttraces.

3.Resultsanddiscussions

Femtosecondpump-probespectroscopystudiesofringclosing reaction of YnPhT molecules in ethanol solution revealed an uptakeoftheopticaldensityat

l

=540–610nmwhenthedelay betweenpumpandprobepulsesisincreasedstepwiseupto0.8ps (Fig. 3). Above 0.8ps, we detected only slight optical density fluctuation.Noprogressivespectralshiftsduringthefirsthundreds Fig.2.Absorptionspectraofgoldnanoparticlesin(a)aqueoussolutionandonthe(b)surfaceofaglassslide.Upperrightinsertsshowpinkcolourof(a)corresponding solutionofAuNPinwaterand(b)onglassslide.Bottominsertsshow(a)TEMimageofAuNPphysisorbedonacarboncoatedcoppergridand(b)SEMimageofAuNPgrafted viaAPTESonaglassslide.

Fig.3.Time-resolvedspectraofYnPhTmoleculesinethanolsolutiondisplaying opticaldensitychangesduringirradiationwithl=266nm.SpectramarkedOFand CFarespectraofmoleculesinOFbeforeandspectraofmoleculesinCFafterUV irradiation.Theinset is thenormalized timeprofile ofring-closing reaction extractedfromtime-resolvedspectraatl=550nmandfittedbydeconvolutionof exponentialfunctionandinstrumentresponsefunction(dottedline).

(4)

of femtoseconds after pump pulse were detected. From the normalizedtimeprofile(Fig.3,inset)wedeterminedtheupper valueoftherise-timeasthecharacteristicofthegradualgrowthof optical density during the ring-closing reaction of YnPhT moleculestobeequal to420fs.Thisvalueis smallerthan that of thiophenebased DAE [45,46], revealinga faster ring-closing reactionoffuran-basedDAEfunctionalizedby4-mercaptophenyl- ethynyl side groups. From these results of the pump probe experiment we expectthat furans graftedonto AuNP willalso showafastercyclizationdynamicscomparedwiththiophenes.

The glass slides covered with AuNP decorated by YnPhT molecules were characterized by UV–vis spectroscopy. When YnPhTmoleculesarecovalentlyboundinOF,theopticalspectrum undergoesaslightmodification.i.etheLSPRchangesfrom521nm to525nmandtheintensityincreasesbyabout6%compared to bare AuNP on glass (Fig. 4a). This 6nm wavelength shift accompaniedwitha slightincreaseoftheabsorbanceistypical whenamolecularlayerisformedongoldnanoparticles.Thesmall change of the refractive index in the close vicinity of the nanoparticle is modeled with the Mie theory and is largely documented[47–49].Inourcasethisplasmonshiftisaproofofthe attachmentofmoleculesinOFandwasdiscussedpreviously[50].

Theconcomitantincreaseoftheabsorbanceistypicalforhybrid systemswheremoleculesaregraftedontonanoparticlesanddo notinduceanyelectroniceffectoranychargetransfer.Wededuce from recent observations done with STM on Au(111) surface coveredbyYnPhTmolecules[50],thattheratherlowincreasein signalintensityisinagreementwitharelativelylowcoverageof theYnPhTontheAuNPsurface.

Uponirradiationof the glassslide by UVlight for 6minan increaseoflightabsorbanceby22%oftheoverallabsorbancewas measured(Fig.4a. dashed curve). Irradiationof thesample by visiblelightforthesameamountoftimeasbeforeledtoadecrease inlightabsorptionoftheglassAuNPYnPhTsystem(Fig.4a).This behaviourissimilartothephotochromic propertiesof thefree YnPhTmoleculesinethanolicsolution(Fig.1),i.e.UVlightleadsto ring-closingreactionofmolecules(coloredsolution) andvisible lightinducesreversiblering-openingreaction(solutionbleaching).

Therefore,theobservedchangesofthelightabsorbanceinFig.4a can be attributed to reversible switching of YnPhT molecules covalentlyboundtoAuNPsurface,sinceUV/visibleirradiationis knowntoinducenomodificationoftheintensityoftheLSPRof bare AuNP [51–53]. To demonstrate reversible switching we

performedseveralOF!CF!OFcycles(Fig.4b).Theseconfirmed thatthematerialinteractsefficientlywithUVaswellasvisible lightand possessespronouncedphotochromic properties.How- ever, some experimental effects were observed and will be discussedinthefollowingparagraphs.

TheCF!OFtransitionundervisiblelightirradiation(Fig.4) leads to a red shift of LSPR and lowering of the overall light absorbance. A complete recovering of the absorption spectra duringOF!CF!OFcycleswasnotobserved(Fig.4a).Sucheffect isnotrelatedtosomespecificpropertiesofAuNPYnPhThybrid material.ItrepresentsintrinsicpropertiesofallDAEphotochromic molecules including YnPhT i.e. OF!CF transition under UV irradiationhasahigherquantumyieldthanthereverseCF!OF undervisiblelightirradiation[2].

Interestingly,anincreaseinthelightabsorbanceuponOF!CF transitionisnotaccompaniedbyared-shiftoftheLSPRasitmight beexpectedwhendielectricconstant isincreasingaccordingto Mietheory[39].Insteadthe

l

maxofLSPRisblue-shiftedby5nm uponUVirradiationofinitiallyattachedmoleculestoinitiatethe OF!CFtransition(redsolidcurve!bluedashedcurve;Fig.4a).

Thiswasobservedsystematicallyfordifferentsampleseachtime whentheyweresubjectedtoUVlight.Thisblue-shiftmighthave twoorigins.Onemightbeasimpleadditiveeffectoftheabsorption spectraofbareAuNP,i.e.theLSPRat521nm(Fig.4a,blackcurve) withtheintrinsic absorption of CFmolecules (

l

maxat554nm;

Fig.1,dashedcurve).However,sinceCFinsolutionexhibitsabroad absorptionband(Fig.1),theadditiveeffectwouldfavoranoverall redshiftoftheLSPRasrecentlyshownbyNishi[54].Seeminglythe observed blueshift in ourexperimentsis not simplybased on variation of the refractive index during OF! CF switching. In agreement with theoretical calculations for other DAE–AuNP hybridswhicharepredictinganelectronicinteraction[55,56],it seemsmoreplausiblethataspecificinteractionbetweenAuNPand molecular-orbitalsoftheclosedformofYnPhTispresentinour system,whichenhancestheimpactontotheopticalpropertiesof YnPhTmolecules.Toconfirmthis,wesubtractedthespectrumof unmodifiedAuNPonglassfromtheonescorrespondingtoYnPhT modified AuNP after alternating UV-/visible-irradiation cycles (Fig.5).

The resulting spectra describe the interaction of AuNP and YnPhT(inopticalmeaning)dynamicallyas afunctionof YnPhT ring-opening/-closingreaction.Thespectraarecharacterizedbya prominentabsorptionbandcenteredat

l

max=547nm(Fig.5,red

Fig.4.AbsorptionspectraofAuNPattachedtoglassslides.(a)Blackcurve(lowest)correspondstobareAuNPonglass(lmax=521nm);redsolidcurvecorrespondstoAuNP withinitiallyattachedOFmolecules(lmax=525nm)andsolidbluecurvecorrespondstothesamesampleaftertwocyclesofUV/visibleirradiation(lmax=521nm).Duration ofeachirradiationis6min.Arrowsdefinethestepwisevariationoftheabsorption-spectraunderconsecutiveUV/visiblelightirradiation.Allspectraweremeasuredonthe samesample.(b)ProfileofthelightabsorbancechangesofglassAuNPYnPhTsamplemeasuredat525nmduringconsecutiveUV/visibleirradiation.UVirradiationleadsto increasedlightabsorbancewhereasvisiblelightirradiationleadstodecreasedabsorbance.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderis referredtothewebversionofthisarticle.).

(5)

curve).UponirradiationwithUVtoinitiateOF!CFtransitionthe overall lightabsorbance inthevisible region increasesstrongly withaconcomitantblue-shiftoftheabsorptionbandby15nmto

l

max=532nm(Fig.5,bluedottedcurve).Thisspecificabsorption bandintheregionof540nmwasobservedsystematicallyinall curvesofFig.5.Initially,wesuspectedacontaminationofourOF- solution by a small amount of CF molecules during AuNP modification. However, under repetitive UV/visible irradiation the intensity of this band remains unchanged relative to its background.Thisrevealedindependenceofthisabsorptionband from the process of ring closing/opening of YnPhT molecules.

Moreover,thewidthofthisbandisabout70nmwhereastheCFof YnPhThasamuchbroader(410–680nm)intrinsicabsorptionband (Fig.1).Thus,wecannotattributethisbandtotheoneobservedfor CFofmoleculesattachedtoAuNP.Asmentionedabove,uponUV- irradiation the position of theabsorption band is slightly blue shifted,whereasitisback-shiftedtotheredregionwhenirradiated byvisiblelight.Basedonthesefindings,wehypothesizethatthis bandresultsfromaninteractionofspecificmolecularorbitalsof terminal 4-mercaptophenyl-ethynyl linker groups with AuNP.

However, this hypothesis requires additional clarification by theoreticalcalculationsofMOsforYnPhTlinkedtoAuNP.

Nevertheless, the reversible increase of absorbance during alternating irradiation with either UV or visible light clearly indicatesaswitchingprocess(Fig.5).Seemingly,thephotochromic propertiesof the hexafluorocyclopentene coreof YnPhTonthe surfaceofAuNParenotquenched.Weattributethistothelinker groups efficiently decoupling the photochromic core from electronicstates oftheAuNP.These groups actasa barrier for surfaceelectronsaimingtooccupylowestunoccupiedMOduring YnPhTswitching.Thus, itshowsthat photo-excitedMOarenot mixedwithAusurfacestateslikeinthecase ofthiophene-base linkers which ledconsequently topartial lossof photochromic properties[13,21].Atthesametimeourlinkerprovidessufficient

p

-conjugationinelectronictransportmeasurements,asevidenced byrecentmolecular-breakjunctionexperiments[35].

To investigate the influence of the AuNP on the switching kineticsofsurfaceboundYnPhTwecomparedtheopticalresponse oftheglass-AuNPYnPhTsystemtowardirradiationwiththatof YnPhTinsolution.WeincreasedthedurationofUVirradiationof theglassAuNPYnPhTsamplestepwiseandmeasuredthevalue oflightabsorbanceat554nmaftereachirradiationcycle(Fig.6a).

AsampleofYnPhTinethanolsolutionwastreatedexactlythesame way(Fig. 6b).Both sampleswereirradiated intwo series with incrementsof10and30sUVirradiation,respectively.

Inexperimentswiththeglass-AuNP–YnPhTsystemwith10s incrementstheintensityof lightabsorptionat 554nm islinear increasing(Fig.6a).Usinglongerincrementsof

D

t=30sleadto

non-linearand more progressive increasingoflight absorbance duringfirsttwocyclesfollowedbydecelerationoverremaining cycles(Fig.6a).

RepeatingtheexperimentwithunboundYnPhTmoleculesin solution(Fig.6b)resultedinaninitiallyfastabsorbanceincrease whichreachedquicklysaturation.Theprocessoccursmorerapidly intheexperimentwith30s.incrementwhereastheexperiment with shorter irradiation intervals of 10s took longer to reach saturation (Fig. 6b). Independent of the irradiation time, the absorbanceincreaseismuchfasterinsolutionthanintheAuNP– YnPhThybrid system(Fig.6b).Saturationisreachedinsolution either after 60s (30s intervals) or 150s (10s intervals) of accumulated UV irradiation whereas the AuNP–YnPhT system doesnotachievesaturation evenafter350sofaccumulatedUV irradiation.LongerUVirradiationofYnPhTsolutionleadstoaslow Fig.5.DifferencespectraobtainedbysubtractingthesignalofunmodifiedAuNP

fromthespectraofAuNPcoatedwithYnPhTintheOF(red)andspectraobtained aftertwocyclesofUV/visiblelightirradiation.(Forinterpretationofthereferences tocolourinthisfigurelegend,thereaderisreferredtothewebversionofthis article.)

Fig.6. Evolutionofabsorbancechangeof(a)glassAuNPsYnPhTsampleinairand(b)ofYnPhTmoleculesinethanolsolutionunderUVirradiation(l=254nm)in incrementsofeither10s(blackdiamonds)or30s(reddots)illuminationtime.Absorbanceismeasuredat554nmaftereachirradiationcycle.(Forinterpretationofthe referencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

(6)

decreaseoflightabsorbancemainlybydecompositionofYnPhT [57].

The kinetics of ring-closing reaction of YnPhT molecules chemicallyattachedtoAuNPsurface is thus differentfromthe oneoffreeYnPhTinsolution.DuringcontinuousUVirradiationof ethanolicsolutionallYnPhTmoleculesaretransformedtoCFmuch more rapidly than the one attached to AuNP surface. YnPhT moleculesattachedtoAuNPapparentlyshowaslowerring-closing reaction.ThisobservationisconsistentwithourrecentUV/visible light switching experiments for YnPhTanchoredto a flat gold monocrystal[10].Theseexperimentsrevealedhigherstabilityof DAE on a metallic surface under mechanical and temperature stressesalbeitwithreducedswitchingkinetics.Thiseffectcanbe explained by modification of the HOMOLUMO gap which is responsibleforthering-closingreactionofYnPhTonagoldsurface.

TheeffectofHOMOLUMOgapmodificationwasexperimentally proven in break-junction measurements [35] and predicted theoretically forother DAEattached tosmallgold cluster[56].

Consequently this leads to different quantum yields for the OF!CF transformation offree YnPhTinsolution andtheones connectedtoAuNP.

Unexpectedly,ourexperimentsshowaslightlydifferentkinetic of ring-closing reaction when different irradiation increments were used. Samples irradiated with longer intervals of UV irradiationshowastrongerincreaseofabsorbanceovertimethan thosesampleswhichwereirradiatedusing10sintervals.Whereas intheAuNP–YnPhThybridsamplebothcurvesmergeafteratotal of 300s, the situation in solution is different. Here samples irradiated in 30s intervals reach saturation faster and start decompositionwhile samples irradiated byshorter intervalsof UVlightlagbehind.Wedonotknowyetifthesolventisinvolvedin this process.At present this effectremains largelyunclear and demandsfurtherinvestigations.

4.Conclusions

YnPhTphotochromicmoleculeswith4-mercaptophenyl-ethy- nyllinker-groupsdisplaysub-picosecond cyclization reactionin solution.Pump-probeexperimentsrevealedafasterringclosing processcomparedtothiophene-basedanalogues. GraftingAuNP (171nm) on APTES modified glass substrates allowed the functionalization of AuNP with YnPhT molecules by standard thiol-Au bond forming technique. The thus generated hybrid systemwascharacterizedbyUVspectroscopyduringalternating UV/visibleirradiationcycles.The interactionofYnPhTwiththe goldsurfacedoesnotleadtocompletequenchingofphotochromic properties;insteaditinducesamoderatedecelerationofthering- closing kinetics. We explain this by the presence of the 4- mercaptophenyl-ethynyl linker-group which apparently decou- plestheMOofthephotochromiccorefromelectronicstatesofthe AuNPthussuppressing quenchingeffects. These rendersYnPhT molecules good candidates for the construction of nano sized organo–metallic hybrid switches with optically controlled properties.It is expected that these propertiesmay improveif attachmentgeometryonAuNPsurfacecanbecontrolled[55,56].

Howeverthisrequiresstrongtheoreticalcalculationperformedin combinationwithmoleculardynamics,DFTandTD-DFTmethods.

Acknowledgments

TheworkwassupportedbytheDNIPROprogram(2015-2016) establishedbyMinistryofEducationandScienceofUkraineand MinistryofforeignaffairsofFrance;theDeutscheForschungsge- meinschaft through project Hu 1682/3-1; the FP7 Marie Curie ILSESprojectNo612620.

References

[1]K.Ogawa,Appl.Sci.4(2014)1–18.

[2]M.Irie,T.Fukaminato,K.Matsuda,S.Kobatake,Chem.Rev.114(2014)12174–

12277.

[3]H.Jia,S.Pu,C.Fan,G.Liu,C.Zheng,DyesPigm.121(2015)211–220.

[4]D.Xue,C.Zheng,C.Fan,G.Liu,S.Pu,J.Photochem.Photobiol.A303(2015)59–

66.

[5]C.Zhang,S.Pu,Z.Sun,C.Fan,G.Liu,J.Phys.Chem.B119(2015)4673–4682.

[6]Y.Ishibashi,M.Mukaida,M.Falkenstroem,H.Miyasaka,S.Kobatake,M.Irie, Phys.Chem.Chem.Phys.11(2009)2640–2648.

[7]M.ElGemayel,K.Borjesson,M.Herder,D.T.Duong,J.A.Hutchison,C.Ruzie,G.

Schweicher,A.Salleo,Y.Geerts,S.Hecht,E.Orgiu,P.Samori,Nat.Commun.6 (2015)6330.

[8]P.Naumov,S.Chizhik,M.K.Panda,N.K.Nath,E.Boldyreva,Chem.Rev.115 (2015)12440–12490.

[9]2nded.,B.L.Feringa,W.R.Browne(Eds.),MolecularSwitches,vol.1,Wiley- VCH,Weinheim,2011.

[10]D.Kim,H.Jeong,H.Lee,W.-T.Hwang,J.Wolf,E.Scheer,T.Huhn,H.Jeong,T.Lee, Adv.Mater.26(2014)3968–3973.

[11]T.Sendler,K.Luka-Guth,M.Wieser,Lokamani,J.Wolf,M.Helm,S.Gemming,J.

Kerbusch,E.Scheer,T.Huhn,A.Erbe,Adv.Sci.2(2015)1500017.

[12]S.J.vanderMolen,R.Naaman,E.Scheer,J.B.Neaton,A.Nitzan,D.Natelson,N.J.

Tao,H.vanderZant,M.Mayor,M.Ruben,M.Reed,M.Calame,Nat.

Nanotechnol.8(2013)385–389.

[13]D.Dulic,S.J.vanderMolen,T.Kudernac,H.T.Jonkman,J.J.D.deJong,T.N.

Bowden,J.vanEsch,B.L.Feringa,B.J.vanWees,Phys.Rev.Lett.91(2003) 207402.

[14]N.Katsonis,T.Kudernac,M.Walko,S.J.vanderMolen,B.J.vanWees,B.L.

Feringa,Adv.Mater.18(2006)1397–1400.

[15]S.J.vanderMolen,H.vanderVegte,T.Kudernac,I.Amin,B.L.Feringa,B.J.van Wees,Nanotechnol17(2006)310–314.

[16]S.V.Snegir,A.A.Marchenko,P.Yu,F.Maurel,O.L.Kapitanchuk,S.Mazerat,M.

Lepeltier,A.Leaustic,E.Lacaze,J.Phys.Chem.Lett.2(2011)2433–2436.

[17]Arramel,T.C.Pijper,T.Kudernac,N.Katsonis,M.vanderMaas,B.L.Feringa,B.J.

vanWees,J.Appl.Phys.111(2012)083716.

[18]Arramel,T.C.Pijper,T.Kudernac,N.Katsonis,M.vanderMaas,B.L.Feringa,B.J.

vanWees,Nanoscale5(2013)9277–9282.

[19]G.Reecht,C.Lotze,D.Sysoiev,T.Huhn,K.J.Franke,ACSNano10(2016)10555–

10562.

[20]R.Hania,A.Pugzzlys,T.Kudernac,H.Jonkman,K.Duppen,in:T.Kobayashi,T.

Okada,T.Kobayashi,K.A.Nelson,S.DeSilvestri(Eds.),UltrafastPhenomena XIV:Proceedingsofthe14thInternationalConference,Niigata,Japan,July25–

30,SpringerBerlinHeidelberg,Berlin,Heidelberg,2005,pp.679–681.

[21]T.Kudernac,S.J.vanderMolen,B.J.vanWees,B.L.Feringa,Chem.Commun.

(2006)3597–3599.

[22]A.J.Kronemeijer,H.B.Akkerman,T.Kudernac,B.J.vanWees,B.L.Feringa,P.W.

M.Blom,B.deBoer,Adv.Mater.20(2008)1467–1473.

[23]S.J.vanderMolen,J.Liao,T.Kudernac,J.S.Agustsson,L.Bernard,M.Calame,B.J.

vanWees,B.L.Feringa,C.Schoenenberger,NanoLett.9(2009)76–80.

[24]B.Wu,K.Ueno,Y.Yokota,K.Sun,H.Zeng,H.Misawa,J.Phys.Chem.Lett.3 (2012)1443–1447.

[25]A.Spangenberg,R.Metivier,R.Yasukuni,K.Shibata,A.Brosseau,J.Grand,J.

Aubard,P.Yu,T.Asahi,K.Nakatani,Phys.Chem.Chem.Phys.15(2013)9670–

9678.

[26]A.Fihey,F.Maurel,A.Perrier,J.Phys.Chem.C119(2015)9995–10006.

[27]H.Nishi,T.Asahi,S.Kobatake,Phys.Chem.Chem.Phys.14(2012)4898–4905.

[28]R.Klajn,J.F.Stoddart,B.A.Grzybowski,Chem.Soc.Rev.39(2010)2203–2237.

[29]M.-M.Russew,S.Hecht,Adv.Mater.22(2010)3348–3360.

[30]T.C.Pijper,T.Kudernac,W.R.Browne,B.L.Feringa,J.Phys.Chem.C117(2013) 17623–17632.

[31]R. Takahashi, S. Kaneko, S. Fujii, M. Kiguchi, Adv. Nat. Sci.: Nanosci.

Nanotechnol.6(2015)015006.

[32]S.V.Snegir,P.Yu,F.Maurel,O.L.Kapitanchuk,A.A.Marchenko,E.Lacaze, Langmuir30(2014)13556–13563.

[33]D.Sysoiev,A.Fedoseev,Y.Kim,T.E.Exner,J.Boneberg,T.Huhn,P.Leiderer,E.

Scheer,U.Groth,U.E.Steiner,Chem.–Eur.J.(2011)6663–6672.

[34]L.A.Zotti,T.Kirchner,J.C.Cuevas,F.Pauly,T.Huhn,E.Scheer,A.Erbe,Small6 (2010)1529–1535.

[35]Y.Kim,T.J.Hellmuth,D.Sysoiev,F.Pauly,T.Pietsch,J.Wolf,A.Erbe,T.Huhn,U.

Groth,U.E.Steiner,E.Scheer,NanoLett.12(2012)3736–3742.

[36]A.A.Khodko,V.V.Khomenko,O.D.Mamuta,I.P.Mukha,D.O.Sysoiev,T.Huhn,S.

V.Snegir,N.M.Kachalova,Mol.Cryst.Liq.Cryst.639(2016)64–70.

[37]A.Khodko,V.Khomenko,Y.Shynkarenko,O.Mamuta,O.Kapitanchuk,D.

Sysoiev,N.Kachalova,T.Huhn,S.Snegir,Chem.Phys.Lett.669(2017)156–160.

[38]D.Kim,H.Jeong,W.-T.Hwang,Y.Jang,D.Sysoiev,E.Scheer,T.Huhn,M.Min,H.

Lee,T.Lee,Adv.Funct.Mater.25(2015)5918–5923.

[39]C.Louis,O.Pluchery(Eds.),GoldNanoparticlesforPhysics,Chemistryand Biology,ImperialCollegePress,London,2012.

[40]B.V.Enustun,J.Turkevich,J.Am.Chem.Soc.85(1963)3317–3328.

[41]J.Turkevich,P.C.Stevenson,J.Hillier,1951,Discuss.FaradaySoc.(1951)55–75.

[42]G.Frens,Nat.Phy.Sci.241(1973)20-22.

[43]J.Kimling,M.Maier,B.Okenve,V.Kotaidis,H.Ballot,A.Plech,J.Phys.Chem.B 110(2006)15700–15707.

(7)

[44]DuringtheimmersionoftheAPTEScoatedcoverslipsthesolutionofAuNP shouldkeepitscolor.Ifacolorchangeoccurs,theremovalofphysisorbedAPTES wasnotsuccessful.Thewholeprocesshastoberepeatedwithfreshreagents.

[45]E.Pontecorvo,C.Ferrante,C.G.Elles,T.Scopigno,J.Phys.Chem.B118(2014) 6915–6921.

[46]Y.Ishibashi,T.Umesato,M.Fujiwara,K.Une,Y.Yoneda,H.Sotome,T.Katayama, S.Kobatake,T.Asahi,M.Irie,H.Miyasaka,J.Phys.Chem.C120(2016)1170–

1177.

[47]L.Guo,J.A.Jackman,H.-H.Yang,P.Chen,N.-J.Cho,D.-H.Kim,NanoToday10 (2015)213–239.

[48]R.E.Messersmith,G.J.Nusz,S.M.Reed,J.Phys.Chem.C117(2013)26725–

26733.

[49]P.K.Jain,K.S.Lee,I.H.El-Sayed,M.A.El-Sayed,J.Phys.Chem.B110(2006) 7238–7248.

[50]S.Snegir,I.Mukha,D.Sysoiev,E.Lacaze,T.Huhn,O.Pluchery,Materialwiss.

Werkstofftech.47(2016)229–236.

[51]P.Chen,B.Liedberg,Anal.Chem.86(2014)7399–7405(Washington,DC,U.S.).

[52]M.Homberger,U.Simon,Phil.Trans.R.Soc.A368(2010)1405–1453.

[53]O.Pluchery, E.Lacaze,M.Simion, M. Miu,A.Bragaru, A.Radoi, Optical characterizationofsupportedgoldnanoparticlesforplasmonicbiosensors, SemiconductorConference(CAS)2010International(2010)159–16201.

[54]H.Nishi,T.Asahi,S.Kobatake,J.Phys.Chem.C113(2009)17359–17366.

[55]A.Fihey,F.Maurel,A.Perrier,Phys.Chem.Chem.Phys.16(2014)26240–26251.

[56]A.Fihey,B.Kloss,A.Perrier,F.Maurel,J.Phys.Chem.A118(2014)4695–4706.

[57] Z.Sekkat,PhotoreactiveOrganicThinFilms,AcademicPress,SanDiego,2002, pp.63–104.

Referenzen

ÄHNLICHE DOKUMENTE

Since, as mentioned before, charge carriers are reduced only at the gold surface, at a given potential, a larger surface to volume ratio automatically leads to a stronger change in

The model was developed assuming a cubic gold wire grid, where the wires which are parallel to the optical polarization give a different optical response compared to the

During experiments dealing with the activation of some steroidal olefins such as 7-dehydrocholesterol and ergosterol to highly reactive alkylating species under

Objectives: The study aimed at investigating the development of the IgE response to 12 molecules of D pteronyssinus and describing the associated risk factors and the clinical

Julian Maroski, Bernd J. Vorderwülbecke, Katarzyna Fiedorowicz, Luis Da Silva-Azevedo, Günter Siegel, Alex Marki, Axel Radlach Pries, Andreas Zakrzewicz; Shear stress

When opening or closing these contacts on a larger distance scale, the con- ductance remains rather constant for 1 or 2 Å, while for metal contacts in this conductance range,

Upward counterfactual thoughts have been found to result in more negative affect, whereas downward counterfactual thoughts have a tendency to result in more positive mood

Since the elements of the Chirgwin-Coulson bond order matrix are introduced directly as variational parameters for the electron density instead of just being used for the