• Keine Ergebnisse gefunden

Quantitative Analysis of WRN Exonuclease Activity by Isotope Dilution Mass Spectrometry

N/A
N/A
Protected

Academic year: 2022

Aktie "Quantitative Analysis of WRN Exonuclease Activity by Isotope Dilution Mass Spectrometry"

Copied!
5
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Short communication

Quantitative analysis of WRN exonuclease activity by isotope dilution mass spectrometry

Aswin Mangerich

a,1,

*, Sebastian Veith

a,1

, Oliver Popp

a

, Jo¨rg Fahrer

a,2

, Rita Martello

a

, Vilhelm A. Bohr

b

, Alexander Bu¨rkle

a,

*

aMolecularToxicologyGroup,DepartmentofBiology,UniversityofKonstanz,78457Konstanz,Germany

bLaboratoryofMolecularGerontology,BiomedicalResearchCenter,NationalInstituteonAging,NIH,Baltimore,MD21224,USA

Wernersyndrome(WS)isarareautosomalrecessivedisorder characterized by a segmental premature aging phenotype, includingearlyonsetofatherosclerosis,osteoporosis,andahigh cancer incidence. The disease is caused by loss-of-function mutationsin theWRNgenewhich encodestheWRNprotein,a member of the RecQ helicase family. On the cellular level, fibroblastsderivedfromWSpatientsdisplaygenomicinstability and a reduced replicative life span (Kudlow et al., 2007). This phenotypeisinaccordancewithexperimentaldatademonstrating thatWRNisinvolvedinmultipleaspectsofDNAmetabolism,such asDNAreplication,genomicmaintenance,andtelomereregulation (Bohr,2008;Reddyetal.,2010;Rossietal.,2010).Incontrasttothe otherfivemembersofthehumanRecQhelicasefamily,WRNalso possesses a unique 30!50 exonuclease activity (Huang et al., 1998).

TheWRNexonucleasecleavestheDNAphosphodiesterbond andreleasesfree 50-dNMPsfromtheDNA strand(Kamath-Loeb etal.,1998).Toelicititsexonucleaseactivity,WRNrequiresa30 recessed end (50-overhang) substrate. WRN does not degrade duplexDNAwithbluntends,unlessthesubstratealsocontainsa junctionoralternateDNAstructuressuchasafork(Broshetal., 2006;ShenandLoeb,2000).Itislargelyinactiveonshortsingle- strandedDNA substrates(Kamath-Loebetal.,1998),but longer ssDNAsubstratesareefficientlydegraded(Machweetal.,2006).Its activityisregulatedbyposttranslationalmodificationsandprotein interactions. For instance, phosphorylation of WRNby DNA-PK inhibitsitsexonucleaseactivity(Karmakaretal.,2002;Yannone etal.,2001). Inaddition,p53,BLM,andPARP1causeinhibitory effects(Broshetal.,2001;Sommersetal.,2005;vonKobbeetal., 2002,2004),whereastheKu70/80complexstimulatesexonucle- aseactivity(Cooperetal.,2000;Kudlowetal.,2007;LiandComai, 2000,2001).

StandardmethodstoassessWRNexonucleaseactivityutilize radioactively or fluorescently 50 end-labeled DNA substrates to detectthedegradationofthefull-lengthDNAmolecules(Boubriak etal., 2009;Broshetal.,2006).Here wepresentan alternative approach toassess WRNexonuclease activitybased on isotope dilution mass spectrometry (LC–MS/MS). This method may be Keywords:

Wernersyndrome WRN

Exonuclease Massspectrometry Aging

PARP1

ABSTRACT

Wernersyndromeisadisordercharacterizedbyaprematureagingphenotype.Thediseaseiscausedby mutationsintheWRNgenewhichencodesaDNAhelicase/exonucleasewhichisinvolvedinmultiple aspectsofDNAmetabolism.CurrentmethodsmostlyrelyonradiometrictechniquestoassessWRN exonucleaseactivity.Herewepresentanalternative,quantitativeapproachbasedonnon-radioactive isotopedilutionmassspectrometry (LC–MS/MS).A oligoduplexsubstratemimicking thetelomeric sequencewasusedformethoddevelopment.Releasednucleotides,whichcorrelatewiththedegreeof oligoduplex degradation, were dephosphorylated, purified, and quantified by LC–MS/MS. Heavy- isotope-labeledinternalstandardswereused toaccountfortechnicalvariability. Themethodwas validatedintermsofreproducibility,time-courseandconcentration-dependencyofthereaction.As showninthisstudy,theLC–MS/MSmethodcanassessexonucleaseactivityofWRNmutants,WRN’s substrate and strand specificity, and modulatory effects of WRN interaction partners and posttranslationalmodifications.Moreover,itcanbeusedtoanalyzetheselectivityandprocessivity ofWRNexonucleaseand allowsthescreeningofsmallmoleculesforWRNexonucleaseinhibitors.

Importantly,thisapproachcaneasilybeadaptedtostudynucleasesotherthanWRN.Thisisofgeneral interest,becauseexonucleasesarekeyplayersinDNAmetabolismandagingmechanisms.

*Correspondingauthorsat:MolecularToxicologyGroup,DepartmentofBiology, UniversityofKonstanz,D-78457Konstanz,Germany.

E-mailaddresses:aswin.mangerich@uni-konstanz.de(A.Mangerich), alexander.buerkle@uni-konstanz.de(A.Bu¨rkle).

1Bothauthorscontributedequally.

2Presentaddress:InstituteofToxicology,UniversityMedicalCenterMainz,D- 55131Mainz,Germany.

Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-197064

Erschienen in: Mechanisms of Ageing and Development ; 133 (2012), 8. - S. 575-579 https://dx.doi.org/10.1016/j.mad.2012.06.005

(2)

particularlyusefulintwosituations:Firstly,forlaboratoriesthat wish to replace the common radioactive assays with a non- radioactiveoneand,secondly,themethodcanbeincorporatedinto high throughput screeningapproaches forsmallmolecules that affectexonucleaseactivity.

Wehavevalidatedournewlydevelopedmethodandcompared ittoamodifiedversionofanestablishedprotocolthatusesa50- biotin-end-labeledDNAsubstratetodetectactivityofrecombinant WRNexonuclease(Broshetal.,2006)(Suppl.Fig.1).Importantly, using a telomericsubstratemimics oneofthekey functionsof WRNwhichistooperateatthetelomere(Bohr,2008).Toassessif thisoligoduplexindeedservesasasuitablesubstrateforWRNin ourhands,anexonucleasereactionwascarriedoutaspublished previously (Broshet al., 2006). Thereaction mixturecontained 75fmoloftheoligoduplexand0.1–1pmolofrecombinantWRN.

Subsequently, digestion products were resolved by denaturing polyacrylamidegelelectrophoresis(PAGE)andbiotinwasdetected bystreptavidin-POD(Suppl.Fig.2).Inthismethod,lossofsignal intensityofthefull-lengthend-labeledDNAsubstratewasusedas readouttoassessexonucleaseactivity.AsisevidentfromSuppl.

Fig.2,WRNefficientlycatalyzesthedegradationofthisoligodu- plex to truncated DNA molecules of various lengths in a concentration dependent manner. Initial degradation of the substrate is visible atan enzymeto substrateratio (E/S)of 1 (10nMWRN)andreachedsaturationatanE/Sof8(60nMWRN) withamaximumefficiencyof80%.

InsteadofdetectingtheshortenedDNAsubstrate,therationale of the LC–MS/MS-based method is to detectdegradation end- products,i.e.,freenucleosides,toassessWRNexonucleaseactivity.

Toallowcomparabilitytothebiotin-end-labelingtechnique,the samesubstrateandidenticalreactionconditionswerechosento develop the LC–MS/MS-based method. Since the oligoduplex contains a repetitivetelomericsequence(TTAGGG)4,LC–MS/MS quantificationoffree20-deoxyguanosine(dG)wasexpectedtobea suitablereadouttoassessWRNexonucleaseactivity.Fig.1showsa flow chartoftheexperimentalprocedure;adetailedprotocolis availableinthesupplementaryinformationsection.Briefly,after theexonucleasereactionwascarriedout,sampleswereplacedon iceand15N-labeleddGwasaddedasaninternalstandardtothe

reactionmixturetoaccountfortechnicalvariabilityduringsample work-up and mass spectrometric measurement. Thereafter, recombinant WRN was removed by spin column filtration, followedbydephosphorylationofthenucleotidestonucleosides usingalkalinephosphatase(AP),removalofthephosphataseby spincolumn filtration, andsubsequentLC–MS/MSanalysis.The recoveryrateoftheinternalstandardwasusually70%.Typical LC–MS/MSchromatograms of unlabeled and 15N-labeleddG as wellasacalibrationcurveareshowninSuppl.Fig.3.

Themethodshowsadequateassay-to-assayvariability(Suppl.

Fig.4A)andcanbeperformedin1–2daysdependentonthetime chosen for AP digestion (Suppl. Fig. 4B; NB: no significant differencesin thequantitiesof dGwereobserved between4-h andovernightAPdigestion,indicatingthatanAPdigestiontimeof 4hissufficientforcompletedephosphorylationofdGMP).

As shown in Fig. 2, free dG was detected in a time and concentrationdependentmanner.Sincethereactionisstillinits dynamic range after 15min in terms of release of free dGMP (Fig.2A),areactiontimeof45minwaschosenforthefollowing experiments to achieve maximum oligoduplex degradation. In agreementwithresultsobtainedfrombiotin-end-labeling tech- nique,WRNactivitywasalreadydetectedatanE/Sof1(5–10nM WRN) and reached saturation at an E/S of 8 (60nM WRN) (Fig.2B).Amaximumof32%oftheexpectedtotalamountofdG wasdetected inWRN-digested samples.Thelowerefficiencyof WRN compared tophosphodiesterase (PDE) may berelated to incomplete annealing of the DNA strands and therefore to incompletedigestionbyWRN.A WRNmutant withamutation in theexonucleasedomain(WRN-E84A, X-WRN)(Huang etal., 1998;Machweetal.,2000)showedstronglydiminishedexonu- clease activity compared to WT-WRN (Fig. 2C). The residual exonuclease activity observed in the X-WRN sample may be related to the sensitivity of the LC–MS/MS method, to some contamination with Zn2+ ions, which can trigger minimal exonuclease activity of X-WRN (Choudhary et al., 2004), or to contaminationoftheX-WRNproteinwithanunknownnuclease.

Conceivable applications of the LC–MS/MS-based method includestudyingeffectsoffactorsthatmodulateWRNexonuclease activity, such as posttranslational modifications and protein interaction partners. For example, PARP1, which catalyzes the synthesis of the biopolymer poly(ADP-ribose) upon genotoxic stress,isanestablishedinteractionpartnerofWRN(Rossietal., 2010;Rouleauetal.,2010).Previously,itwasshownthatPARP1 inhibits both WRN’s helicase and exonuclease activities (von Kobbeetal.,2004).Inagreementwiththeseresults,PARP1ledto aninhibitionofWRNexonucleaseactivitybyupto80%asdetected byLC–MS/MSanalysis(Fig.2D).

Furthermore, the method can be applied to study WRN’s substrate and strandspecificity. To this end, we tested several newlydesignedWRNoligoduplexsubstrateswhicharecompatible withourassay,i.e.anoptimizedforkedoligoduplex,ablunt-ended oligoduplex,andoligoduplexescontaininga4-wayjunctionanda 50-overhang(Suppl.Table1forfullsequencedetails).Allsubstrates compriseda strandthat contains only dG, dA, dT (‘dG’strand) within a repetitive sequence element (XXXGGG)6 (X=A,T in alternating sequence to assure annealing specificity) and a complementarystrandthatonlycontainsdC,dA,dT(‘dC’strand).

Exceptfortheblunt-endedsubstrate,thedG-strandwasexpected tobeaccessibleforWRNexonucleaseactivity.Inagreementwith previous reports(Broshetal., 2006;Kamath-Loebetal., 1998), oligoduplexeswhichcontainedtheforkand4-wayjunctionserved asefficientsubstratesfor WRNexonuclease,whereas theblunt endedoligoduplexshowedalmostnoreleaseoffreedG(Fig.3A).

Moreover,significantWRNexonucleaseactivitywasdetectedwith the50overhangsubstrate,howevertoalesserextentthanwiththe forkand4-wayjunctionoligoduplexes.Asexpected,WRNwasnot

Exonuc lease re actio n to g enerate free nucl eoti des

Remov al of enzymes by filtrati on through 10 kD c ut-off filter Addition of

15

N-labeled inter nal sta ndard

Dephos phorylation of nucl eoti des to nucl eos ides

Remov al of phos phatas e by filtrati on through 10 kD c ut-off filter

LC-MS/MS analysis

Fig.1.FlowchartfortheLC–MS/MSquantificationofWRNexonucleaseactivity.

(3)

able to degrade the complementary strand as efficiently as evaluatedbyanalyzingthereleaseoffreedC(Fig.3B).Insummary, themethoddescribedhereinopensupnewpossibilitiestostudy substrate and strand specificity of WRN in particular and exonucleasesingeneral.

Inconclusion,wehavedevelopedanovel,non-radioactiveLC–

MS/MS-basedquantitativemethod toassessWRNexonuclease function and activity with high sensitivity, accuracy, and precision.Asmassspectrometryisacommontoolinmolecular bioscience, this method represents a reliable and easy-to-use alternativetoexistingtechniqueswith50 end-labeledoligonu- cleotides. Our method is comparable to existing radiometric techniquesintermsofworkloadandeconomicaspects,butcanbe performedinhigherthroughputandenablesmassspectrometric structuralcharacterizationandfullquantificationoftheexonu- cleasedigestionproducts.Forthisreasonthisnewmethodshould beinstrumentalforseveralapplications.Asdemonstratedinthis study,theLC–MS/MSmethodcanbeusedtostudyexonuclease activityofWRN mutants(Fig. 2C),modulatory effects ofWRN interactionpartners andposttranslational modifications onits exonucleaseactivity(Fig.2D),andWRN’ssubstrateandstrand specificity (Fig. 3). Moreover, the LC–MS/MS method can be

employed to analyze the selectivity and processivity of WRN exonuclease with high specificity. For example, as shown by classicalradiometrictechniques,WRNexonucleaseisselectively blockedbyspecificbasemodificationssuchas8-oxo-guanine,8- oxo-adenine, and cholesterol adducts, but is active on other lesions such as uracil or hypoxanthine (Bukowy et al., 2008;

Machwe et al., 2000). Since released base adducts can be unequivocallyidentified,characterized,andquantifiedbymass spectrometry, the current method represents a promising approachtoextendsuchstudies.Inaddition,thismethodallows the screening of small molecule libraries for potential WRN exonucleaseinhibitors.InanalogytoarecentlyidentifiedWRN helicaseinhibitor(Aggarwaletal.,2011),suchpotentiallyexisting exonucleaseinhibitorscouldbeusefultoolstostudythefunction of WRN in a cellular context and may also have therapeutic potentialin cancertreatment.Wearecurrently planningsuch screeningapproachesforfindinginhibitorsorstimulatorsofthe WRNexonucleaseactivityatnanomolarlevels.Finally,theLC–

MS/MS-basedmethodcanbeextendedandadaptedtostudythe activity,specificity,andprocessivityofnucleasesotherthanWRN.

ExperimentswithEscherichiacoliExoIshowthefeasibilityofsuch extendedapplications(Fig.4).

0 20 40 60

0 50 100 150 200

R

2

=0.960 4

Time [min]

A m ou nt dG [ fm ol ]

A B

C

0 100 200 300 400 500 600 700

0 20 40 60 8010 0 PDE po sitive cont.

WRN

R

2

=0.926 3 C

WRN [nM]

A m ou nt dG [ fm ol ]

0 50 100 150 200 250

WRN [nM]

PAR P1 [nM]

- 40

40 -

40 40

40 80

***

***

n.d.

Amount dG [fmol]

D

WT-WRN X-WRN 0

100 200

300 ***

Amount dG [fmol]

Fig.2.AnalysisofWRNexonucleaseactivitybyisotopedilutionmassspectrometry.WRNdegradesanoligoduplexsubstratemimickingthetelomericrepeatsequence (TTAGGG)4tomononucleotides.Duetotherepetitivesequenceoftheoligoduplextheamountoffree20-deoxyguanosine(dG)correlateswiththeextentofoligoduplex degradation.PriortoLC–MS/MSanalysis,nucleotidesweredephosphorylatedusingalkalinephosphatase.SamplesweresubjectedtoLC–MS/MSanalysismonitoringthe transitionm/z268!152(dG)inthemultiplereactionmonitoring(MRM)mode.15N-labeleddGwasaddedasaninternalstandarddirectlyafterthereactiontoaccountfor technicalvariabilityduringsamplework-upandLC–MS/MSanalysis;theiontransitionm/z273!157wasmonitoredinMRMmode.(A)TimecourseanalysisofWRN exonucleaseactivityusing40nMWRNshowsthatthereactionreachedaplateauafter30min.(B)WRNdegradestheoligoduplexinaconcentrationdependentmanner.After incubationwith60–100nMWRNfor45min,thereactionreachedaplateau.Incubationoftheoligoduplexwithsnakevenomphosphodiesterase(PDE)servedasapositive control.(C)AmutationintheWRNexonucleasedomain(WRN-E84A,X-WRN)ledtoastronglydiminishedexonucleaseactivity(40nMofWT-WRNandX-WRN, respectively;reactionswererunfor45min)(D)RecombinantPARP1inhibitsWRNexonucleaseactivity.ConcentrationsofWRNandPARP1wereusedasindicated;reactions wererunfor45min.Oligoduplexsubstratewasusedinaconcentrationof75fmol(A,B,D)or100fmol(C)perreaction.Statisticalanalysiswasperformedusingone-way ANOVAfollowingBonferroni’smultiplecomparisontest.***p<0.0001.DatarepresentmeansSEM(N3);Rrepresentsthenon-linearregressioncoefficient.n.d.,not detectable.

(4)

AlimitationoftheassayincludesthataccesstoanLC–ESI-MS/

MSsystemisaprerequisiteforitsuse.Moreover,itislimitedto studyexonucleaseactivityinnon-cellularsystemsandsofaritis notapplicabletostudytheexonucleasedirectionality.

Insummary,theLC–MS/MS-basedexonucleaseactivityassay addstothearmamentariumofmethodstostudyDNAmetabolism ingeneraland,asdemonstratedinthisstudy,inparticularinthe fieldofmolecularagingresearch.

Acknowledgments

This work was supported by the Deutsche Forschungsge- meinschaft (Research Training Group[RTG] 1331 and Konstanz ResearchSchoolChemicalBiology,KoRS-CB)andtheUniversityof Konstanz (Ausschuss fu¨rForschungsfragen). SVissupported bya fellowship of the RTG 1331. OP and RM were supported by fellowshipsoftheKoRS-CB.Theworkwaspartiallysupportedby

theintramuralProgramoftheNationalInstituteonAging,National InstitutesofHealth.WewouldliketothankPeterC.Dedon,ErinG.

Prestwich, and Koli Taghizadeh from the MIT Center for Environmental Health Sciences for sharing their expertise in quantitativemassspectrometry.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.mad.2012.06.005.

References

Aggarwal,M.,Sommers,J.A.,Shoemaker,R.H.,BroshJr.,R.M.,2011.Inhibitionof helicaseactivitybyasmallmoleculeimpairsWernersyndromehelicase(WRN) functioninthecellularresponsetoDNAdamageorreplicationstress.Proceed- ingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica108, 1525–1530.

Bohr,V.A.,2008.RisingfromtheRecQ-age:theroleofhumanRecQhelicasesin genomemaintenance.TrendsinBiochemicalSciences33,609–620.

Boubriak,I.,Mason,P.A.,Clancy,D.J.,Dockray,J.,Saunders,R.D.,Cox,L.S.,2009.

DmWRNexoisa30-50exonuclease:phenotypicandbiochemicalcharacteriza- tionofmutantsoftheDrosophilaorthologueofhumanWRNexonuclease.

Biogerontology10,267–277.

BroshJr.,R.M.,Karmakar,P.,Sommers,J.A.,Yang,Q.,Wang,X.W.,Spillare,E.A., Harris,C.C.,Bohr,V.A.,2001.p53ModulatestheexonucleaseactivityofWerner syndromeprotein.JournalofBiologicalChemistry276,35093–35102.

BroshJr.,R.M.,Opresko,P.L.,Bohr,V.A.,2006.EnzymaticmechanismoftheWRN helicase/nuclease.MethodsinEnzymology409,52–85.

Bukowy,Z.,Harrigan,J.A.,Ramsden,D.A.,Tudek,B.,Bohr,V.A.,Stevnsner,T.,2008.

WRNExonucleaseactivityisblockedbyspecificoxidativelyinducedbase lesionspositionedineitherDNAstrand.NucleicAcidsResearch36,4975–

4987.

Choudhary,S.,Sommers,J.A.,BroshJr.,R.M.,2004.Biochemicalandkineticcharac- terizationoftheDNAhelicaseandexonucleaseactivitiesofWernersyndrome protein.JournalofBiologicalChemistry279,34603.

Cooper,M.P.,Machwe,A.,Orren,D.K.,Brosh,R.M.,Ramsden,D.,Bohr,V.A.,2000.Ku complexinteractswithandstimulatestheWernerprotein.GenesandDevel- opment14,907–912.

Huang,S.,Li,B.,Gray,M.D.,Oshima,J.,Mian,I.S.,Campisi,J.,1998.Thepremature ageingsyndromeprotein.WRN,isa30>50exonuclease.NatureGenetics20, 114–116.

Kamath-Loeb,A.S.,Shen,J.C.,Loeb,L.A.,Fry,M.,1998.Wernersyndromeprotein.II.

Characterizationoftheintegral30>50DNAexonuclease.JournalofBiological Chemistry273,34145–34150.

PDE WRN

0 10 20 30 40 50 60 70 80 90 100

Junction Alternative fork

**

**

***

***

*

Blunt end 5'-overhang

% of expected total dG

A B

PDE dC WRN dC

0 10 20 30 40 50 60 70 80 90 100

Junction

Alternative fork Blunt end 5'-overhang

% of expected total dC

Fig.3.AnalysisofWRNsubstrateandstrandspecificity.WRNsubstratespecificitywastestedwithseveraloligoduplexsubstratescontainingtherepetitivesequenceelement (XXXGGG)6(X=A,T).Reactionmixturescontained100fmolofeacholigoduplex,i.e.,anoptimizedfork(‘‘alternativefork’’),a4-wayjunctioncontainingoligoduplex,ablunt endedoligoduplex,andanoligoduplexwitha50overhang(forsequenceinformationseeSIsection).15N-dGand15N/13C-dCwereaddedasinternalstandardsdirectlyafterthe reactiontoaccountfortechnicalvariabilityduringsamplework-upandLC–MS/MSanalysis.Sampleswereanalyzedinmultiplereactionmonitoring(MRM)modewiththe followingtransitions:14N-dG(m/z268!152),15N-dG(m/z273!157),14N/12C-dC(m/z228!112)and15N/13C-dC(m/z240!119).PDEdigestionservedasapositive controlandledtothereleaseof70–100%oftheexpectedtotalamountofdG(A)anddC(B)ofeacholigonucleotide.WRNexonucleasereactionwasperformedinthepresence of40nMWRNfor45min.(A)EvaluationofthereleaseoffreedGofsubstratesasindicated.Whereastheblunt-endedoligoduplexservedasapoorsubstrateforWRN exonuclease,the50-overhangledtothereleaseof30%oftotaldG,andtheforkedand4-way-junction-containingsubstratesservedasefficientsubstrates(>50%releaseof expectedtotaldG).(B)WRNactivityonthedG-complementarystrandofthedifferentsubstrateswastestedbydetectingthereleaseoffreedC.IncontrasttotheWRN- dependentdegradationofthedG-strands,asexpectedthedC-strandsservedaspoorsubstratesforWRNexonucleaseshowingareleaseof<35%oftheexpectedtotalamount ofdC.WRNdatarepresentmeanSEM(N=3).PDEdatarepresentmeansfromtwoindependentexperiments.WRNdatawasevaluatedbyStudent’st-testforstatistical significantdifferences.*p<0.05,**p<0.01,***p<0.001.

0 5 10 15 20 25 0

100 200 300 400 500 600 700

R

2

=0.9 822

Exo I [ac tivity units]

Am ou nt d G [fm o l]

Fig.4.AnalysisofExoIactivity.LC–MS/MSquantificationofExoIactivity.E.coliExo I degrades asingle-stranded oligonucleotide substrate(75fmol), containinga repetitiveelement(TTAGGG)4,tomononucleotidesinaconcentrationdependent manner. Data are meansSEM (N=3). Rrepresents the non-linear regression coefficient.

(5)

Karmakar,P.,Piotrowski,J.,BroshJr.,R.M.,Sommers,J.A.,Miller,S.P.,Cheng,W.H., Snowden,C.M.,Ramsden,D.A.,Bohr,V.A.,2002.WernerproteinisatargetofDNA- dependentproteinkinaseinvivoandinvitro,anditscatalyticactivitiesare regulatedbyphosphorylation.JournalofBiologicalChemistry277,18291–18302.

Kudlow,B.A.,Kennedy,B.K.,MonnatJr.,R.J.,2007.WernerandHutchinson–Gilford progeriasyndromes:mechanisticbasisofhumanprogeroiddiseases.Nature ReviewsMolecularCellBiology8,394–404.

Li,B.,Comai,L.,2000.FunctionalinteractionbetweenKuandtheWernersyndrome proteininDNAendprocessing.JournalofBiologicalChemistry275,28349–28352.

Li,B.,Comai,L.,2001.RequirementsforthenucleolyticprocessingofDNAendsby theWernersyndromeprotein–Ku70/80complex.JournalofBiologicalChem- istry276,9896–9902.

Machwe,A.,Ganunis,R.,Bohr,V.A.,Orren,D.K.,2000.Selectiveblockageofthe30

>50exonucleaseactivityofWRNproteinbycertainoxidativemodificationsand bulkylesionsinDNA.NucleicAcidsResearch28,2762–2770.

Machwe,A.,Xiao,L.,Orren,D.K.,2006.Length-dependentdegradationofsingle- stranded30endsbytheWernersyndromeprotein(WRN):implicationsfor spatialorientationandcoordinated30to50movementofitsATPase/helicase andexonucleasedomains.BMCMolecularBiology7,6.

Reddy,S.,Li,B.,Comai,L.,2010.ProcessingofhumantelomeresbytheWerner syndromeprotein.CellCycle9,3137–3138.

Rossi,M.L.,Ghosh,A.K.,Bohr,V.A.,2010.RolesofWernersyndromeproteinin protectionofgenomeintegrity.DNARepair(Amsterdam)9,331–344.

Rouleau,M.,Patel,A., Hendzel,M.J.,Kaufmann,S.H.,Poirier,G.G.,2010. PARP inhibition:PARP1andbeyond.NatureReviewsCancer.

Shen,J.C.,Loeb,L.A.,2000. Wernersyndromeexonucleasecatalyzesstructure- dependentdegradationofDNA.NucleicAcidsResearch28,3260–3268.

Sommers,J.A.,Sharma,S.,Doherty,K.M.,Karmakar,P.,Yang,Q.,Kenny,M.K.,Harris, C.C.,BroshJr.,R.M.,2005.p53modulatesRPA-dependentandRPA-independent WRNhelicaseactivity.CancerResearch65,1223–1233.

vonKobbe,C.,Harrigan,J.A.,Schreiber,V.,Stiegler,P.,Piotrowski,J.,Dawut,L.,Bohr, V.A.,2004.Poly(ADP-ribose)polymerase1regulatesboththeexonucleaseand helicaseactivitiesoftheWernersyndromeprotein.NucleicAcidsResearch32, 4003–4014.

vonKobbe,C.,Karmakar,P.,Dawut,L.,Opresko,P.,Zeng,X.,BroshJr.,R.M.,Hickson, I.D.,Bohr,V.A.,2002.Colocalization,physical,andfunctionalinteractionbe- tweenWernerandBloomsyndromeproteins.JournalofBiologicalChemistry 277,22035–22044.

Yannone,S.M.,Roy,S.,Chan,D.W.,Murphy,M.B.,Huang,S.,Campisi,J.,Chen,D.J., 2001.Wernersyndromeproteinis regulatedandphosphorylatedbyDNA- dependentproteinkinase.JournalofBiologicalChemistry276,38242–38248.

Referenzen

ÄHNLICHE DOKUMENTE

When mean values of the administrations of different unheated extracts were compared for total cannabinoids (estimate of total oral bioavailability), TPGS addition resulted

Elevated concentrations of 1.64 ng/mg and 3.53 ng/mg were measured in two cases where repeated GHB or GBL consumption was suspected, while a single intake of a “thera- peutic”

Methods: The LC/MS/MS approach developed for untargeted screening analysis used MS/MS under data-dependent acquisition control (DDA) to identify compounds by subsequent library

Therefore, the aim of the presented work was to study its phase I and II metabolism and to show its detectability in our standard urine screening approaches (SUSA) using GC- MS

Buket Bozkurt Sarikaya a, *, Nehir Unver Somer a , Gulen Irem Kaya a , Mustafa Ali Onur a , Jaume Bastida b , and Strahil Berkov cZ. a Department of Pharmacognosy, Faculty

GC-MS (gas chromatography-mass spectrometry) analyses of alkaloids in the aerial parts and bulbs of Galanthus rizehensis Stern (Amaryllidaceae), collected during two different

Because of the nature of the relationship between Extended CP/M and the s.a Executive, it is stron:Jly slXjgested that any user writing conventional machine

If uracil specific activity is abolished in the protein solution of ExoA quadruple mutant, it will support the proposition that ExoA triple mutant has acquired DNA