• Keine Ergebnisse gefunden

Specialization of quadratic and symmetric

N/A
N/A
Protected

Academic year: 2022

Aktie "Specialization of quadratic and symmetric "

Copied!
21
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

A C T A A R I T H M E T I C A X X I V (1973)

ndes, M a t h .

University,

Specialization of quadratic and symmetric

bilinear forms, and a norm theorem

by

M A N F B E D K N E B U S C H (Saarbrücken)

(338) Dedicated to Carl Ludwig Siegel on hü 75 birthday

Introduction. I n t h e first p a r t of this paper ( § l - § 3 ) we s t u d y t h e specialization of a symmetric bilinear o r quadratic f o r m over a field K w i t h respect t o a place X: K->Lvoo, p r o v i d e d the f o r m has " g o o d reduc- t i o n " . W e have t o distinguish between s y m m e t r i c b i l i n e a r a n d quadratic forms since we do not exclude fields of characteristic 2 . A t y p i c a l result obtained b y this theory is the f o l l o w i n g : W e denote a s y m m e t r i c bilinear f o r m b y the corresponding s y m m e t r i c m a t r i x of its coefficients. L e t k(t) be the field of r a t i o n a l functions i n independent variables t x , t r over a field k. Consider symmetric bilinear forms (/#(*))> over k(t) whose coefficients fij{t)1 gkl(t) are polynomials. Assum e t h a t the f o r m (gki(t)) i s represented b y (fq(t)). Assume further t h a t c is a n r - t u p e l i n Jf such t h a t the f o r m (fij(c)) over k is n o n singular. I f charfc # 2 t h e following holds t r u e :

(i) I f also (gki(c)) is n o n singular, t h e n this f o r m i s represented b y [faie)) over k (see § 2 ) .

(ii) I f (gki(t)) is a diagonal m a t r i x w i t h m rows a n d columns a n d if c i s a n o n singular zero of each p o l y n o m i a l g^t), t h e n the f o r m (/#(£)) has W i t t index > m/2 if m is even a n d > ( m + l ) / 2 i f m is o d d (see§3).

The assertion (i) m a y be considered as a generalization of the principle of s u b s t i t u t i o n of Cassels a n d Pfister ([15], p . 3 6 5 ; [10], p . 20). A t t h e end of Section 3 (Proposition 3.6) we shall also generalize t h e subform theorem of Cassels a n d Pfister ([15], p . 366; [10], p . 20).

U s i n g t h e result quoted above a n d a similar result f o r charfc = 2 we p r o v e i n the last section § 4 a theorem about the p o l y n o m i a l s i n k[t]

w h i c h c a n occur as norms of s i m i l a r i t y over Jc(t) f o r a f i x e d symmetric bilinear f o r m defined over k. Special cases of this n o r m theorem have been used i n a crucial w a y b y A r a s o n a n d Pfister i n [1] a n d b y E l m a n a n d L a m i n [5].

(2)

I n general our results about quadratic forms are m u c h less complete t h a n those about bilinear forms.

A l t h o u g h t h e language of forms is quite n a t u r a l t o describe t h e m a i n results of this paper, we use i n the b o d y of the paper the geometric language of quadratic a n d bilinear spaces, since t h e geometric language seems t o be more suitable to understand t h e proofs.

The theory developed here w i l l be applied i n a subsequent paper about t h e behavior of quadratic forms i n transcendental field exten- sions [9].

§ 1. Preliminaries about bilinear and quadratic spaces. W e recall some standard notations a n d w e l l - k n o w n facts about symmetric bilinear a n d quadratic forms over a (not necessarily noetherian) local r i n g A.

F o r proofs of statements given here w i t h o u t further reference a n d moreover for t h e basic theory over a r b i t r a r y c o m m u t a t i v e rings t h e reader m a y consult Chapter V of [3], [13], [7] a n d § 1 of [8]. I n t h e present paper essentially o n l y t h e case t h a t A is a field or a v a l u a t i o n r i n g w i l l p l a y a role.

A free (symmetric) bilinear module (EjB) over A is a finitely gen- erated free ^.-module E equipped w i t h a symmetric bilinear f o r m B:

ExE->A. W e often denote (E, B) b y a symmetric m a t r i x (a{j) w i t h a{j

= B(x{, Xj) fo r some basis x19..., xn of E over A. W e say t h a t (E, B) — or B — is non singulary or t h a t (E, B) is a bilinear space, i f det(a^) lies i n t h e u n i t group A* of Ar i.e. i f x\-^B{—, x) is a bijection f r o m E t o the d u a l module Hom^(_E, A). A free quadratic module (E, q) over A is a finitely generated free ^.-module E equipped w i t h a quadratic f o r m g, i.e. w i t h a m a p p i n g q: E-+A such t h a t q(cx) = c2q(x) a n d B(x,y):

— q(oc + y) — q(x) — q(y) is bilinear i n x a n d for c i n JL, x a n d y i n E.

W e say t h a t {Er q) — or q — is non singular or t h a t (E, q) is a quadratic space if the associated bilinear f o r m B is n o n singular. A quadratic module (E, q) w i l l often be denoted b y a s y m m e t r i c m a t r i x [a#] i n square bracket w i t h au = q(Xi)j a{J = B(xiy Xj) if i # j , for some basis xx, xn of E.

If 2 is a u n i t i n A there is n o essential difference between quadratic a n d bilinear modules, since then a n y bilinear f o r m B corresponds t o a unique quadratic f o r m q(x) = \B(x, x).

F o r a free quadratic module we always denote t h e quadratic f o r m b y t h e letter q a n d t h e associated bilinear f o r m b y B as far as n o con- fusion is possible, a n d we often write E instead of (JE7, q). S i m i l a r l y we denote the bilinear f o r m of a free bilinear module usually b y the letter B, a n d we often write E instead of (E, B). I f we use the w o r d " s p a c e " w i t h o u t further specification we regard bilinear a n d quadratic spaces a t t h e same time. T h e r a n k of a free finitely generated J.-module V w i l l be denoted b y d i m V.

L e t

<p(l)=l (p*(E) t h f o r m w h no 4, § 3 clear w h L e t module 1 other sul If A is c consistin for EjT- W e submodn case and E is anitt over A ] t r o p i c q A qi isotropic to t h e o:

tains a d to the o

E v e position (*) w i t h E0 r a t i c ca>

(1.0) for quae thermor the n u n ; determr write t case the still uni<

space o:

t = i n d .

(3)

complete ribe the eometric language it paper i exten-

"e recall bilinear r i n g A.

iioreover ler may- it paper

i l l p l a y ely gen- 'orm B:

w i t h a? 7 F. B) - .%) lies om E to

~er A is f o r m q, B(x, y):

I! i n E.

uadratic module bracket

a O f E.

itic a n d unique ic f o r m no con- a r l y we otter B, w i t h o u t

ie same lenoted

L e t q>: A-+A' be a h o m o m o r p h i s m between (local) rings (of course

^(1) = i ) . F o r any free bilinear or quadratic module E we denote b y .(p*(E) the JZ-module E^^A' equipped w i t h the bilinear resp. quadratic form w h i c h is deduced f r o m the f o r m on E b y base extension ([4], § 1 no 4, § 3 no 4). W e often write E®AA' or E®A! instead of <p*(E) if i t is elear w h i c h m a p q> is considered.

L e t E be a free quadratic or bilinear module over A. W e call a sub- module V of the JL-module E a direct submodule if E = V@W w i t h some other submodule W ( © means the module s u m , w i t h o u t regarding forms).

If J . is a v a l u a t i o n r i n g then for a n y submodule V of E the module V1 consisting of a l l x i n E such that B(V, x) = 0 is a direct submodule, for E/Y1 is torsion free a n d finitely generated a n d hence free.

W e call the bilinear or quadratic module E isotropic if E has a direct submodule V # 0 w h i c h is totally isotropic, i.e. q(V) = 0 i n the quadratic case a n d B(VxV) = 0 i n the bilinear case. If E is not isotropic, we say E is anisotropic. Notice tha t if A is a field a n y anisotropic bilinear module over A must be a space, b u t t h a t i n case char J . = 2 there exist aniso- tropic quadratic modules w h i c h are not spaces.

A quadratic space E over A is called hyperbolic, if E contains a t o t a l l y isotropic direct submodule V such t h a t VL = V. T h e n E is isomorphic to the orthogonal sum txH of t = .J-dimJE? copies of the hyperbolic plane E =|J Jj.- S i m i l a r l y a bilinear space E is called metabolic, if J0 tains a direct submodule V = Tr J-. A metabolic bilinear space is isomorphic to the orthogonal sum of spaces

con-

w i t h some a i n A.

E v e r y quadratic resp. bilinear space E has a n orthogonal decom- position

(*) E •= E0±2I

w i t h E0 anisotropic a n d 31 hyperbolic resp. metabolic. N o w i n the q u a d - ratic case W i t t ' s cancellation law is true, since J . is l o c a l [6], i.e.

(1.0) E\ AG ^ I1* ±G =>FX g± F2

for quadratic spaces F±,F2,G over A ("^" means " i s o m o r p h i c " ) . F u r - thermore M ^ txH w i t h some > 0. Thus i n the decomposition (*) the number t = J-dimitf a n d up to isomorphism the space E0 are uniquely determined b y E. W e call t t h e index of E a n d i<70 a kernel space of JE? a n d write t = indJS, J?0 = Ker(.2?). If is a/iWd of char 2 t h e n i n the bilinear ease the cancellation l a w fails, but the space E0 i n (*) is u p to isomorphism still u n i q u e l y determined b y E ([7], § 8.2, [11]). W e again call J^o a kernel space of E a n d t: = i d i m i l / the index of E a n d w r i t e EQ = K e r ( i ? ) , t = inAE.

(4)

W e call t w o bilinear resp. quadratic spaces E a n d F over A equivalent, a n d write• E ~ F, i f there exist metabolic resp. h y p e r b o l i c spaces J f a n d N such t h a t E± M ^ F±N. I f well-defined k e r n e l spaces exist, this means Ker(E) ^ Ker(jF). T h e equivalence class of a space E w i l l be denoted b y {E}. F o r a n y space E we denote b y —E t h e m o d u l e E equipped w i t h t h e f o r m —B resp. —g, where B resp. q denotes t h e f o r m of t h e original space. T h e space E J_( —E) is always metabolic resp. hyper- bolic. T h u s t h e equivalence classes of bilinear or quadratic spaces f o r m a n abelian group under t h e a d d i t i o n {E} + {F} = {E±F}, a n d t h e i n - verse of a class {E} is {—E}. T h i s group is called the Witt group W(A) of bilinear spaces resp. t h e W i t t group Wq{A) of quadratic spaces over A.

I n fact, W(A) i s even a c o m m u t a t i v e r i n g under t h e m u l t i p l i c a t i o n {E}. {F} == {E<g)F}. H e r e E<g> F denotes the tensor p r o d u c t of the A - m o d u l e s E a n d F equipped w i t h t h e tensor produc t of t h e bilinea r forms of E a n d F ([4], § 1 n o 9). (Furthermore Wq(A) is a Tf (A)-module; w e shall not need this fact.) C l e a r l y a r i n g h o m o m o r p h i s m y: A-+A' (with <p(l) = 1 of course) induces homomorphisms W(<p): W(A)-+W{A') a n d Wq(<p):

Wq(A)->Wq(A') w h i c h m a p th e class {E} of a space E to t h e class {^(2*7)}.

W e n o w give a description of t h e r i n g W(A) b y generators a n d relations. A n y bilinear space E over A w h i c h contains a n element x w i t h B{x,x) i n A * has a n orthogonal basis, i.e.

E ^(aj±...±(a17) ,

w i t h some ati n A * . A s usual we denote the r i g h t h a n d side also b y (a1,...

an). N o t i c e t h a t i f 2 is a u n i t of A every bilinear Äpace E # 0 con- tains some # w i t h J3(#, a?) i n A * . A n y w a y f o r a n a r b i t r a r y l o c a l r i n g A the r i n g W(A) is a d d i t i v e l y generated b y t h e classes {(a)} of spaces of r a n k one. W e write {a} instead of {(a)}. L e t G denote t h e group A*[A*2 of square classes <a> = a A *2. W e have a r i n g h o m o m o r p h i s m O f r o m the group r i n g Z[G] onto W(A) mapping- (a) t o {a}. L e t m denote t h e m a x i m a l ideal of A . T h e following w e l l k n o w n theorem w i l l be used i n this paper o n l y f o r tn = 0 .

T H E O R E M 1.1 ([19], S a t z 7, [7], § 5 , [8], § 1 ) . Assume A/m contains more than two elements. Then the kernel of 0 is additively generated by the elements <<*>•+<•—<*> and the elements <a1y + (a2}--<b1y--<b2y such that (ax, a2) 9*'(&!, 62)> which is the case if and only if (axa^) = <&i&2>

6X = c2a1 + d*a2 with c and d in A.

W e close this section w i t h some remarks o n q u a d r a t i c modules.

T h e following generalization of W i t t ' s cancellation theorem is a n imme- diate consequence of Satz 0.1 i n [6].

P R O P O S I T I O N 1.2. Let M and N be free quadratic modules over a local ring A and let G be a quadratic space over A. If G±N represents G±M then N represents M.

F o r consisting say t h a t (in differ<

the quas t h u s E n has a d«

w i t h so:

the n u i n determin oiE. A n ;

V h a s i n

®r@vr a space, (e.g. [7]:

due to t

§ 2 . w i t h K i t i o n rin£

of h L E 3 over o s case eve If c a n d the Pre ->Wg(ii T h i s is (In [13 Prüfer : M1 ~ 2 case 21 W i w i t h re of f u l l : B y L e n m i n e d s depend even t l .

(5)

equivalent, spaces i f aces exist, ace E w i l l module E the f o r m :sp. hyper- paces f o r m ad t h e i n -

oup W(A) 'es over A.

implication A-modules Orms of E yf we shall h<p(l) = 1 i d Wq(<p):

™{<P*(E)}.

gators a n d ent x w i t h

v #-0 con- al r i n g A

spaces of up A * / A *2 a <P f r o m lenote t h e je used i n n contains ated by the such that

^ib2} and modules, a n i m m e - ver a local nts G±M

F o r a n y quadratic module E over a field K we c a l l t h e submodule consisting of a l l x i n E w i t h 2? (a?, JE7) = 0 t h e quasilinear part of JE7. W e say that E is non degenerate if t h e quasilinear p a r t of 25 is anisotropic (in difference to the terminology i n [6]). N o t i c e t h a t i n the case c h a r K ^ 2 the quasilinear part of a n o n degenerate module E m u s t be zero a n d thus E must be a space. A n y n o n degenerate quadratic module E over K has a decomposition

B a r x [ i o ] I En

w i t h some r > 0 a n d E0 anisotropic (cf. [2], p . 160). B y P r o p o s i t i o n 1.2 the number r a n d u p to isomorphy the quadratic m o d u l e EQ are u n i q u e l y determined b y E ([2]). W e call r t h e index of E a n d E0 a kernel module of E. A n y m a x i m a l t o t a l l y isotropic submodule V of E has r a n k r. Indeed, 7 has intersection zero w i t h the quasilinear p a r t E of E. T h u s E = B©

© V@W w i t h some other module W. T h e module U = V@W m u s t be a space. Thus V is contained i n a hyperbolic space M cz U of r a n k 2 d i m F (e.g. [7], Satz 3.2.1). W e have E = J f X J i "1 a n d J fx m u s t be anisotropic due to the m a x i m a l i t y of V.

§ 2 . Good reduction of spaces. W e consider a f i x e d place A: K->Luco w i t h X a n d i fields of a r b i t r a r y characteristic. W e denote b y o t h e v a l u a - t i o n r i n g of /, b y m the m a x i m a l ideal of o a n d b y ja t h e restriction o->2/

of A.

L E M M A 2.1. Assume JI1 and 3I2 are (quadratic or bilinear) spaces over o such that ^ J/2<g>0jEL. Then Mx ~ M2. In the quadratic case even 31\ ^ 312.

If c h a r i # 2 there is of course no d i s t i n c t i o n between the quadratic a n d the bilinear ease.

P r o o f o f L e m m a 2.1. Since o is a Prüfer r i n g t h e maps Wq(o)->

-+Wq(K) a n d W(o)-*W{K) induced b y th e i n c l u s i o n o->K are injective.

This is p r o v e d i n [7], § 1 1 , or [13], p . 93, i n t h e bilinear case.

(In [13] only D e d e k i n d rings are considered, b u t t h e proof holds for Prüfer rings.) T h e quadratic case c a n be settled i n t h e same w a y . T h u s 311 ~ 312. Since 31 ± a n d 312 have the same r a n k we o b t a i n i n the quadratic case .JIX ^ 3I2 (see § 1). q.e.d.

W e say that a quadratic or bilinear space E over K has good reduction w i t h respect to A, if E contains a quadratic resp. bilinear space over o of full r a n k , i n other words, if E ^ 3I®0K w i t h some apace 31 over o.

B y L e m m a 2.1 the space p*(3I) is u p to W^tt-equivalence uniquely deter- m i n e d b y E. W e denote the class i n W(L) b y A* {JE?}. I t clearly depends o n l y of the class {E} i n W(K). I n the q u a d r a t i c case b y L e m m a 2.1 even the space /.i*(3I) over L is u p t o i s o m o r p h i s m u n i q u e l y determined

(6)

b y E, a n d w i l l be denoted b y A* (JE). W e call A*(2?) the reduction or spe- cialization of E w i t h respect to A. Assume now that Charly = 2 a n d E is bilinear. W e say t h a t E has very good reduction, if E contains a bilinear space i f over o of full r a n k such that the space J/*/mi/ = i f ®o/m over o/m is anisotropic. T h e n for a n y other space i f ' over o of f u l l r a n k con- tained i n E we o b t a i n f r o m i f ' / m i f ' ~ i f / m i / " that i / / m i f is isomorphic to a kernel space of i f ' / m i f ' (see § 1) a n d thus i f ' / m i f " ' ^ i f / m i f , since the ranks are equal. T h u s also i f ' / m i f ' is anisotropic a n d p+(M) ^ /im(M'), W e again call iu * ( i f ) the reduction or specialization A* (2?) of 2?.

The later E x a m p l e 2.6 (i) shows t h a t i n the bilinear case w i t h c t i a r i

= 2 "good r e d u c t i o n " is not enough to ensure the uniqueness of A* (2?).

P R O P O S I T I O N 2.2. Let E = F ±G be an orthogonal decomposition of a space E over K.

(i) If E and F have good reduction, then also G has good reduction and X*{E) = / * { i ? H / * { £ } .

In the quadratic case even

h{E) ^^(F)U*(G).

(ii) Assume E is bilinear and c h a r i = 2 . If E has very good reduc- tion and F has good reduction, then F and G both have very good reduction and again

A*(2?) ^ A*(F)_LA*(G). .

E e m a r k . W e shall see i n § 3 (Proposition 3.2) t h a t i n assertion (ii) the assumption that F has good reduction can be dropped.

P r o o f . W e chose a decomposition G = G0±G1 w i t h G0 anisotropic a n d Gx hyperbolic resp. metabolic. I t is easy t o f i n d a space Bx over o of f u l l r a n k i n Gx. I t remains to f i n d such a space i n G0. Clearly G0 is a kernel space of E±(—F). W e chose spaces i f , JN7 over o of f u l l r a n k i n E a n d F. W e further chose a decomposition i f JL( — N) ^ B0±S into a n anisotropic space B0 a n d a hyperbolic resp. metabolic space 8. The space 220®02T is again anisotropic (see [7], §11.1), hence

B0®0E ^KeT(E±(-F)) ^G0,

a n d G ^B®0E w i t h B: = B0±B1. W e see that G has good reduction , a n d obtain f r o m E ^ (N±B) ®0E, tha t /*{£} = A* {F} + A* {G} a n d i n the quadratic case A* (2?) ^ X*(F) J_A*(G).

Assume n o w t h a t c h a r i = 2 a n d E is a bilinear space w i t h v e r y good reduction. T h e n NlmN'±B/mB is anisotropic. T h u s b o t h summands are anisotropic a n d assertion (ii) follows, q.e.d.

If i f a n d J\T are quadratic or bilinear free modules over a local r i n g A, we say t h a t i f is represented b y N a n d write i f < JSr, if ^ c o n t a i n s

a direct is a spac*

module 1 to the 1 of space;

C o i u K and n

(i) I (ii) - is anisotr

P r o coincides a regulai d u c t i o n « t i o n r i m Clearly the quot hypothe, w i t h the canonica quireme:

W e 2.2 w i t h E g±F„

E e t h a t JST/

" s t a b l y (b) field -BL jective.

..: A s Co:

r of van be an r

(i) and if is repn

(ii)

(/«(*)),

(7)

•w or spe~

2 a n d E i bilinear o/m over ank con- omorphic since

fch c h a r X of A*(#).

sition of otion and

)ä reduc- reduction

r t i o n (ii) isotropic

\ oyer o rly ö0 is

a l l r a n k _!_# into e 8. T h e

uction, a n d i n ith v e r y mmands

>eal r i n g contains

a direct submodule M' (isomorphism respecting t h e forms). I f J f is a space t h i s implies X M ±T w i t h a suitable quadratic resp. bilinear module T. O f course i f X a n d i f are b o t h spaces also T is a space. U p to t h e last p a r t of this section we shall only deal w i t h representations of spaces b y spaces.

C O R O L L A R Y 2 . 3 . Assume A is a regular local ring with quotient field K and maximal ideal 9ft and that JH and J V are spaces over A.

(i) In the quadratic case M®AK < X®AK implies M/3JIM < N/WIN.

(ii) If 2 € 301 the same holds true in the bilinear case, if in addition N/WIN is anisotropic.

P r o o f . I t is easy to construct a place A: K-+A/Soluoo w h i c h o n A coincides w i t h t h e evident m a p A-+A/3JI. I n fact, l e t tlf ...,tr denote a regular system of parameters of A. W e show t h e existence of A b y i n - duction o n r. I f r = 1 take the canonical place associated w i t h the v a l u a - t i o n r i n g A. Assume n o w r > 1 a n d l e t p denote t h e p r i m e ideal Atr. Clearly Ap is a v a l u a t i o n r i n g a n d L: = Av/pAp m a y b e regarded as the quotient field of the r i n g A/p, w h i c h is again regular. B y i n d u c t i o n hypothesis there is a place a : L-*AfiBtuoo w h i c h coincides o n Afp w i t h t h e evident m a p from Afp to A/SR. L e t ß: K-^Luoo denote t h e canonical place associated w i t h Ap. T h e place A = aoß fullfills our r e - quirements.

W e now obtain the assertions of Corollary 2 . 3 a p p l y i n g P r o p o s i t i o n 2.2 w i t h E: = X®AK, F: = M®AK a n d 0 a space over K such t h a t E g*F±G. q.e.d.

E e m a r k s 2A. (a) I f i n p a r t (ii) of Corollary 2 . 3 w e d o n o t assume that is anisotropic, then i t still c a n b e shown t h a t J f / 2 R J f i s

" s t a b l y represented" b y N/WIN, i.e. J f / 9 K J f _ L # i s represented b y XjyRN±S for some space S over AjWl.

(b) I t is u n k n o w n whether for a regular l o c a l r i n g A w i t h quotient, field K t h e canonical maps W(A)->W(K) a n d Wq(A)->Wq(K) are i n - fective. Corollary 2 . 3 gives a small h i n t t h a t this m i g h t b e true.

A s a special case of Corollary 2 . 3 we o b t a i n

C O R O L L A R Y 2 . 5 (Principle of substitution). Let (/#(*)) and (ffia(t))i<itftem be symmetric matrices of polynomials in an arbitrary number r of variables t. = (tt,.... tr) over an arbitrary field Jc. Let further c = {cx,..., cr) be an r-tuple with coordinates ct in a field extension L of k.

(i) If the quadratic modules [gki(c)] and [/#(<?)] over L are nonsingular and if the module [gki(t)] over k(t) is represented by •[/#(<)], then [gkl(c)]

is represented by [/^(c)].

(ii) The analogous statement holds for the bilinear modules (gki(t))y (fn(t))> (9ki(e))i {fij(c)) tf w e assume in the case charfc = 2 in addition that (fij(c)) is anisotropic.

(8)

4 P r o o f . [gkl(t)] resp. (gki(t)) is a fortiori represented b y [/#($)] resp. (/#(*))

over £(J). T h u s i t suffices t o consider the case L = 7;. 2sow a p p l y Corollary 2.3 w i t h A = ftp]p, where p denotes the ideal of ftp] generated b y — c1 9 . . . , ^ — cr. q.e.d.

B e n i a r k . Corollary 2.5 (ii) is i n the case m = 1 a n d a l l fi}{t) con- stant t h e well k n o w n principle of substitution of Cassels a n d Pfister ([15], p . 365, [10], p . 20). I n this case no additional assumption is needed if char ft = 2. I n fact, we m a y assume again that L = ft. L e t E denote the space (/#) over ft. W e consider a decomposition

* - * 4 *

S) ^ f r i) H I J)

w i t h E0 anisotropic a n d m i n i m a l r. T h e n the subspace

i = E0±(a1, «r)

is anisotropic. (#n(/)) is already represented b y E<g>k(t), a n d o u r Corollary 2.5 shows t h a t (gu(c)) is represented b y E, hence b y E.

E X A M P L E S 2.6. (i) Assume ft is a field of Charakteristik 2 w h i c h is not perfect, a n d l e t a b e a n element of ft w h i c h is n o t a square. T h e n w i t h one variable t t h e spaces (1,'1 + ai2) a n d [a. a(l + at2)) over ft(t) are isomorphic. S u b s t i t u t i n g £ = 0 we o b t a i n t h e spaces ( 1 , 1 ) a n d (a, a) over ft, w h i c h are n o t isomorphic. (1, l + at2) represents (a) over k(t) b u t (1,1) does n o t represent (a) over ft. This shows that even for m = 1 a n a d d i t i o n a l assumption is needed i n Corollary 2.5 (ii) i f char ft = 2 a n d the f{j(t) are n o t constant.

(ii) F o r m = 2 a n d char ft = 2 already a n additional assumption is needed i f a l l f{j are constant. F o r example w i t h t h e element a f r o m above t h e spaces ( 1 , 1 , a) a n d (a + t% a + t2, a) over k(t) are isomorphic (see [11], Theorem 3, or [7], Satz 8.3.1). Thus (1,1, a) represents t h e anisotropic space (a, a + t2) over k(t). B u t ( 1 , 1 . a) does n o t represent (a, a) over ft. Indeed, otherwise ( 1 , 1 , a) w o u l d be isomorphic t o (a, a, a) w h i c h is absurd, since (a, a, a) does n o t represent (1).

W e n o w want t o prove a generalization of P r o p o s i t i o n 2.2 i n t h e quadratic case. A s above l e t /: K->Luoo denote a fixed place w i t h v a l u a t i o n r i n g o. W e t a c i t l y assume u p t o t h e end of this section t h a t c h a r i = 2, since otherwise L e m m a 2.8 a n d Proposition 2.9 below are already proved.

L E M M A 2.7. Let N be a free quadratic module over o such that NJmN is non degenerate. Then N is maximal among the lattices Is' over o in N®K with q{N') c o.

P r o o f

w i t h Nx a decomposii p . 259). S i : i n the subi i n E such

Xi i n N{i since Nx i?

implies x2

L E M M

MlmM an Then Nim sotropiCj t P r o o o/m. W e f to show 1

_ L ( - J f ) .

for some prove o u i now.

W e r bolic p l a n of t h e o- B{x, N) = sees, that 2.7. Thus a v e r y c l of N is n more ox-

.(b) "

of L e i n i i i over o an*

a n d thus 1.2 w e ( to show the proof tions of

(9)

MM*))

oroUary

It) con- Pfister needed denote

>rollary

liich is . T h e n '(t) are i (a, a) er k(t)

m = 1 -Jc =2 t i o n is i. f r o m lorphic

ts the

>resent

•'h.a, a) in the*

> w i t h a t h a t w are X/nuV

P r o o f . There exists some decomposition

T / T T U V = Nt±N2

w i t h JN^ a space over o/m a n d N 2 the quasilinear p a r t of NjmN. This decomposition can be lifted to a decomposition N = J ^ i J J V ^ (^.g. [6], p. 259). Since ÄF2 is anisotropic i t is easily seen t h a t N2 is the set of a l l z i n the submodule y2®K of E w i t h g ( z ) € 0 . INOW assume t h a t a? is a vector i n E such tiiat:g(jV + o#) is still contained i n o. W e have x=xx + x2 w i t h

i n jSf{®E. Clearly 5(a?, A7^) =\B(a?1 ? J ^ ) <= o. T h i s implies a^cS^, since JVY is a space. Thus X + ox = ^ + 0 0 ^ . I n p a r t i c u l a r q(x2)eo, w h i c h implies ^2€-ÄT 2, as states above. This completes the proof, q.e.d.

L E M M A 2.8. Let 31 and N be free quadratic modules over 0 such that i f / m J f and 'NjvxN are non degenerate. Assume that N®K represents If<g>2L Then J^/miV* represents 3Ifm3I. If 31 is a space over 0 or if N/mN is ani- sotropic, then even N represents 31.

P r o o f , (a) W e shortly write M for M/mM, N for F/mN, a n d Jc for o/m. W e first consider the special case t h a t 31 is a space over 0 a n d have to show I f < J. B y P r o p o s i t i o n 1.2 i t suffices to p r o v e 31 J_( — M) < JV_L

_ L ( - J f ) . JSOW

3I±(-3I)

a r x [ j J]

for s o m e r > 0. Thus we see again b y P r o p o s i t i o n 1.2 t h a t i t suffices to p r o v e our assertion i n the special case 31 ^ ^ jj, w h i c h we consider now.

W e regard N as a lattice of E: = N<g>K. Since Ü7 represents a hyper- bolic plane, there exists some x i n N w i t h q (x) = 0 a n d ox a direct s u m m a n d of the o-module X The ideal B(x,N) of 0 is f i n i t e l y generated, thus B(x, J¥) = ao w i t h some a == 0 i n 0 . A s s u m e a em. T h e n one i m m e d i a t e l y sees, t h a t g takes on'N + a^xo o n l y values i n 0 . T h i s contradicts L e m m a 2.7. Thus aeo* a n d there exists some y i n N w i t h B(x, y) = 1 . (This is a v e r y classical argument, see e.g. [14], p. 235). T h e submodule ox + oy of N. is n o n singular a n d i n p a r t i c u l a r a direct s u m m a n d of N. F u r t h e r - more ox + oy is isotropic a n d t h u s hyperbolic.

(b) W e now consider the general case. A s e x p l a i n e d i n the proof of L e m m a 2.7, we have a decomposition 21 = 3I1)L_M2 w i t h Mx a space over 0 a n d B(II2 x 312) <= nt. W e k n o w b y p a r t (a) of t h e proof t h a t M1 < JV, a n d thus JV ^ 3I1±F2 w i t h some quadratic module J V8. B y P r o p o s i t i o n 1.2 we o b t a i n f r o m 31 ®K < N®K t h a t l/2®JBL < N2®K. I t suffices to show t h a t 3I2jm3I2 is represented b y j$r2lmN2. W e t h u s have reduced the proof to the special case t h a t B (11x31) c m i n a d d i t i o n to the assump- tions of the proposition.

(10)

W e again regard J as a lattice i n E: = IS7® K a n d regard i f as a lattice i n F: = i f ® IT. W e assume w i t h o u t loss of generality t h a t J 7 is a submodule of Ü7 over K. N o w the intersection Xt: = 37n J P is con- tained i n i f since i f is the set of a l l z i n F w i t h i n o. B y t h e elemen- t a r y divisor theorem there exists a basis . . . , %m of J f a n d a basis Vu Vm °* ^1 s u° k * ba* 3/i ^ at ^ 'w ^ a i ^n o. W e m a y assume t h a t there is some s i n [0, m ] such that a{ = 1 for 1 < i < $ a n d c^cm for

$ < i < m . I f s = m , t h e n J T2 = i f a n d thus i f < J\T. C e r t a i n l y s = m if N is anisotropic. Since n o w we assume s < m. L e t V denote the image of t h e direct s u m m a n d Nr of A7 i n N. Since J B ( i f x i f ) c m we h a v e 5 ( 1 ! x f j) c tn a n d thus B(YxY) = 0. L e t a{ denote t h e image of q(%i) i n k. T h e n

(*) l ^ W i . . . i W , a n d

F a W l . . . i W l ( ^ ^ ) x [0].

L e t further V0 denote t h e intersection of Y w i t h t h e quasilinear p a r t B of N. Since V0 is a n anisotropic submodule of Y. clearly F0 is represented b y i.e.

(**)

w i t h J = d i m Y0 a n d suitable elements c1 ? i n fc*. ( B e a d Y0 for the r i g h t h a n d side i f t = *.) Thus we have a decomposition V = V0±U where U is a submodule of Y w i t h

CT [Ci] 1 . . • 1 [c,-*] _L (m - s) x [0].

(The [ct] have to be omitted if t = Ä.) N O W we choose a submodule TP of N such t h a t

jsr = B,@u®w = i?±(i7eF).

T h e submodule P : == [/©TT must be a space. L e t um_t denote a basis of U w i t h g(^) = ct for 1 < i < 5 — a n d q(Ui) = 0 for 5 — J < i

^m — t. Since J3( CT xZ7) == 0, we c a n f i n d elements £m_* i n P such t h a t J3 fZj) = 0 a n d JB (^, %) = for i a n d j i n [1, m — t] (e.g. [7], S a t z 3.2.1). T h u s we finally obtain a decomposition

N ^B±(ku1 + kz1)±...±(kum^ + kzm^t)±Q

w i t h some space Q. N o w J B represents Y0 a n d JcUi+kZf represents [ c j for 1 < i < $ — t. F o r s — t < i ^ m — t t h e space fc^ + ft^- is hyperbolic a n d certainly represents [ a< + <] . W e see that JV5 indeed represents i f , since b y (*) a n d (**)

M F o l [ o1] i . . . i [ v/] l [ as + 1] l . . . l K ] . q.e.d.

W e sa>

w i t h respec f u l l r a n k \ quadratic i the just p i to isomorp

W e nc Propositioii

P B O P O

nearly goo<

MF) < }.

C O R O . . .

for the qua<i

and J T / a i l :

true if the

§ 3 . S

place /.: Ji case t h a t t crete also [ the argum

T H E O I

with A* {a}

h{a} = 0 P r o o a n d /: K ther assui is infinite element a map .1 fr

= {a} if a u n i t of o.

i n K*. A c that A ru

w i t h (alr of o, thi>>

T h e n z =•

such t h a1 ments u.

5 — Acta Ar

(11)

gard 31 as i i t y t h a t F

•:~\F is con- he elemen- ud a basis

sume t h a t i a{€m for nly s = m

the image i we h a v e

imasre of

ear p a r t R epresented

ad 70 for ' = v0±u

module W

_i denote

P s-^t < i

?m_t i n P ] (e.g..[7],

V

Quadratic and symmetric bilinear forms, and a norm theorem

W e say that a quadratic module E over K has nearly good reduction w i t h respect to A: A % X U C O , if J ? contains a quadratic o-module M of full r a n k w i t h 31/mil/ non degenerate. W e then denote b y A* (22) the quadratic module ,u+(JI) over L w i t h ,u: o->£ the restriction of A. B y the just proved L e m m a 2.8 the quadratic module /.*(JE7) depends up to isomorphy only on E a n d A.

W e now obtain from L e m m a 2.8 the following generalization of Proposition 2.2 for quadratic modules:

P R O P O S I T I O N 2.9. If E and F are quadratic modules over K with nearly good reduction ivith respect to A: I I> i u o o , and if F < E, then A*(F)<A*(E).

C O R O L L A R Y 2.10. The assertion (i) of Corollary 2.3 remains true if for the quadratic modules 31 and X occurring there we only assume that 3IjyjtM and X/yjlN are non degenerate. The assertion (i) of Corollary 2.5 remains true if the word "non singular1 there is replaced by unon degenerate".

§ 3 . Subspaces w i t h bad reduction. A s i n § 2 we consider a f i x e d place A : ' Ü L - > i u o o . The following theorem is w e l l - k n o w n i n the special case that the v a l u a t i o n r i n g o of A has r a n k 1, see [7], § 12, a n d for o dis-.

crete also [17] a n d [13]. Chapter I V . § 1. W e shall prove it b y generalizing the argument given i n [13].

T H E O R E M 3.1. There exists a unique additive map W(K)->W(L)

with A* {a} = {/.(a)} for every a in K* such that A(a) ===0, oo7 and with A*{a} = 0 for every a in K* such that ?.(ac2) = 0 or oo for every c in K*.

P r o o f . W e may assume w i t h o u t loss of generality t h a t L = o/m and A: J L - K L U O O . i s the canonical place associated w i t h o. W e m a y fur- ther assume m == 0. .since else the theorem is t r i v i a l . T h e n certainly K is infinite a n d we can a p p l y Theorem 1.1 w i t h A = K. The image of a n element a of o i n L w i l l be denoted b y ä. W e have a well defined additive map .1 from the group r i n g Z[G]. G: = K*jK*2, to W(L) w i t h /l<a>

= {ä} if a in o*, a n d A (a = 0 if the square class (a} does not c o n t a i n a u n i t of o. Clearly this map .1 vanishes on a l l elements <a> — < — a} w i t h a i n IC A c c o r d i n g to Theorem 1.1 our theorem w i l l be p r o v e d if we show that A vanishes on an a r b i t r a r y element

\sents [Ci]

lyperbolic sents Mf

w i t h (aly a.2) ^ ( % , at). If none o f:t h e square classes contains a u n i t of o, this is evident. Thus we assume without loss of. generality a^o*.

T h e n z = \ax) y w i t h a n element

y = 1 + <c> — <ft> — \bc^

such that (1, e) ^ (6, be), w h i c h means 6 =u*-+v2c w i t h suitable ele- ments uj v of K. F o r a r b i t r a r y elements a i n o* a n d x i n Z[G] we clearly

5 — Acta Arithmetica XXIV.3

(12)

have A((a}x) = {a}A(x). Thus i t suffices t o prove A(y) = 0. W e assume that b o t h u a n d v are # 0 , since otherwise already y = Ö.

W e first consider the case that c lies i n o * . T h e n Mv) =(l-r{c})A(l-<b)).

W e have n o t h i n g t o prove if .{c} = {—1}. Thus we assume i n a d d i t i o n {c} # { — 1 } / w h i c h means that t h e space (1, c) over L is anisotropic.

Changing b b y a square we further assume t h a t u a n d v b o t h lie i n o b u t not b o t h i n m. Since (1, c) is anisotropic, we have b = .ü2 + cv2 ^ 0 a n d

A(y) = (i + {c})(l-{ü* + c&}) 0 .

W e now consider t h e remaining case that < c does n o t contain a u n i t of o. T h e n u~2v2c is not a unit a n d thus either b = u2(l + d) or b

= t, 2e ( l - f d ) w i t h some d i n m. Hence J (1 — b ) = 0 or = '1 — {c} a n d A(y) 0 i n b o t h subcases. q;e.d.

E e m a r k . F o r a bilinear space E over T T w i t h good reduction the element /*{!?} constructed i n § 2 is the same element as the image of {E} under the map /* constructed now. This follows easily from the fact, that f o r every space 31 over o at least the space J / _ ( l ) has the f o r m ( « ! , . . . , af) w i t h a( i n o* (cf. §1).

The map W(K)->W(L) gives some information ' about spaces w i t h good reduction w h i c h contain subspaces w i t h bad reduction, i.e. not good reduction.

P P W O P O S I T I O N 3.2. Let E be a bilinear space over K with good reduction.

(i) Assume e h a r i # 2 . If E, represents a space ..., bm) ßiich that

?,(b{c2) = 0 or oo for each b{and every c in K*. then /*(£) has. index ^ {m/2}.

(As usual {m/2} denotes the least integer > ml2.)

(ii) If c h a r i = 2 and E has very good reduction, then each subspace of E also has very good reduction.

P r o o f , (i) JE? ^ , . . , - &m, c2 w i t h some c{ i n K*. Thus h{E} = ?^{{c11 . . . , c „ _m) } . F r o m the definition-.of /.* i t is clear that the equivalence class of /„*(£) contains a space of r a n k < )t—m. This means t h a t A * ( E ) has a n index ^ {m/2}.

(ii) E must be anisotropic since E has very good reduction. Thus certainly every subspace of E has an orthogonal basis. I f E w o u l d con- t a i n a subspace w i t h b a d reduction, then E would contain a space (b) of r a n k one such that /-(6c2) 0 or oo fcr all c i n K*. B u t then we see again, t h a t A*(J?) is equivalent to a space of lower rank. This contradicts the assumption t h a t /*(£) is anisotropic. X o w the assertion follows f r o m P r o p o s i t i o n 2.2 (ii). q.e.d.

P R O P O S I T I O N 3.3. Let (fi}(t)\'.be a symmetric (n, nymatrix of polyno- mials fij(t)€k[tl1 ir] over an arbitrary field Jc, and gx(t), gm(t) be ni

further A coordina is a no) i depend h:

(gi(t),~

P r e

r = 1, t:

use of t l X(tx) = <

T h e n :

for 1 < ; dinates v L e t e' C l a r y 2.3 U s i n g t l ' over /t'(/

w i t h soJ L e t /.: I /*: Wik zero, tht This me

Ass:

B y wha a space ß: ]:((()- of r a n k

E e apply i m

PVJ

near!j/ <>

is a st(fj has an

P I T

non deg(

With 80!

(13)

0. W e assume - 0.

ie i n a d d i t i o n is anisotropic, rh lie i n o b u t

- cv- ~ 0 a n d

* not c o n t a i n /(2(1-M) or b -= 1 — {c} a n d reduction t h e the i ma,ere of r'rom the fact, has the f o r m ibout spaces tion, i.e. n o t ood reduction.

bm) such that idex > {m/2}.

ach subspace in J L \ T h u s

!ear t h a t the . This means action. T h u s

•] w o u l d c o n - i a space (b)

then we see s contradicts

follows f r o m

;x of polyno-

?gm(t) be m

< 1

further polynomials in l:[t]. Assume c = (cx, cr) is an r-tuple with coordinates in a field extension L of k such that det{fij(c)) ^ 0, and that c is a non singular zero of each gpJ i.e. gp(c)•=. 0, (dgpjdtq)(c) # 0 with some q depending on p. Then if the space (/#(*)) o v e r k(t) represents the space lgi(t)> the space {fij(c)) over L has an index > {m/2}.

P r o o f . A s i n the proof of C o r o l l a r y 2.5 we m a y assume L = k. Ii r = 1. then our proposition follows i m m e d i a t e l y f r o m P r o p o s i t i o n 3.2 b y use of the place A: k(tl)-*k\jcG over k (i.e. A is t h e i d e n t i t y o n Jc) w i t h }9(tx) = c1. Assume n o w r > 1. W e first consider the case t h a t & is infinite.

Then there exists a n /-tuple (alJ...,ar) i n Jcr such t h a t

r

q(0gpidtq)(c) ==0

for 1 <J p < m. Thus performing a suitable linear transformation of coor- dinates w i t h coefficients i n k we m a y assume (dgpjdt^(c) ^ 0 for 1 < p < m.

L e t & denote the (/• — l ) - t u p l e (c2, ..., cr). There exists a place a: k(t) - > h " ( y u x over fc(^) w i t h afa) - e4- for 2 ' < * < r. (Cf. the proof of Corol- l a r y . 2.3 w i t h A the local r i n g of k{h)[U. ..., tr] corresponding to V . ) Using the m a p A*: IFfÄ;(^)) —^TF(Ä*(#x)) we see t h a t the space (fii(t11cr)) over fc^) is equivalent to a space

if/iCivO? gm(tu <*•')> hi(ti)< . w i t h some polynomials JiP(ti) a n d w — (If m = omit the Jip.) L e t A: kit^-^ku CSJ denote t h e place over k w i t h A(^) = cx. T h e n using

•A*: T F f k ^ l - ^ - T F ^ ) we see that, since a l l A*{^(^, c')}, 1 < i < m, are zero, the space•(/.,-;(e)|. over 7J is equivalent to a space of r a n k < n — m.

This means that the index of this space is > {m/2}.

Assume n o w that k is finite. L e t u denote a n indeterminate over k.

By..what has been proved the space (fij(c)) is equivalent over k(u) to a space of r a n k < n — m. A p p l y i n g ß * : W{k(u))->W(k) w i t h some i^lace

•ß: h{u)—^kuco over Avwo see that lfij(c)) is over k equivalent to a space of rank //^. q.e.d.

E e in a r k . If eliar// — 2 the proof could have been shortened b y applying first the principle of substitution a n d t h e n P r o p o s i t i o n 3.2 (i).

PROPOSITION 3A. Assume E is a quadratic module over K ivJiicli Jias nearly good reduction ivith respect to A: K->Luoc. Further assume that F is a submodule of K with /.\q(x)) = 0 or co for every x in F. TJien A*(ü7) lias an index dimF.

P r o o f . L e t X denote a module over o of full r a n k i n E w i t h X/mX non degenerate a n d let 31 denote the intersection XnF. T h e n X = 31 ©31' w i t h some .other submodule 31' of X. T h e image M of 31 i n X/mX is

(14)

a submodule of t h e same r a n k as J F w i t h q(M)=- 0, since q(oc)€m for all x i n I f . This implies the assertion (see § 1 ) . q.e.d.

PROPOSITION 3.5. Let (/,-;($)) be a symmetric matrix of polynomials fij(t) in k[t] - k[tx, , . . , tr] and g^t), ...,gm(t) be m further polynomials

in k[t]. Assume that c = ( c1 ? . . . . cr) is an r-tuple tvith coordinates c{ in a field extension L of k, such that the quadratic module [fij(c)] over L is non degenerate, all gp(c) = G, and the matrix (dgpjdtq)(c) has rank m. Assume further that the module over k(i) represents [gi(t)]±... __[gm(t)].

Then ijie module [fij(c)] over L has index ^ in.

P r o o f . W e m a y assume k = L. F u r t h e r replacing* the variables t{ b y t{ — c{ we assume c =• 0. F i n a l l y subjecting the t£ t o a suitable linear transformation w i t h coefficients i n k we assume

(dgßldtQ)(0) = <5

for 1 ^ p < m, 1 < q < r. W e consider t h e field I\ = s) w i t h a n i n - determinate s over k(t), a n d the subfield 7;(K) = k(u1, ...,ar) of J L w i t h

if. = / . s "1. L e t / denote the place from K = k(u, s) to Ä-(Y/) over.

w h i c h maps 5 to 0. E e g a r d i n g the module -F = [<M()]

over I i , we shall prove below:

(**) = 0 or cv for a l l # i n JP

Since t h e module [fij(t)] OYQY K represents P . a n d /.(/,) = 0 for 1 < i < v..

it t h e n follows b y P r o p o s i t i o n .3.4, that the module [/y(0)] over k(u) has index > m. B y Corollary 2.10 also the module [/0(0)] over A: has index > m.

W e n o w prove •(**)• F o r a n y x ^ 0 i n F the v a l u e g(«r) has the f o r m ZN~l w i t h

m

X == h(u, s)2, Z.== J T ^ - N , « )2f f f ( « i « , ...,*/>.*),.

Ä(W, *) a n d af(w, « ) denoting polynomials i n s] such t h a t 7*(u, «): ^ 0 and n o t a l l a* (M, *) = 0 . W e n o w regard t h e af(u, s) as polynomials i n s w i t h coefficients i n k[u]. F o r some 1^0 we m a y write for 1 < f < r

a{(y, s) = b{(M)sz + higher terms',

w i t h a t least one b{(u) # 0 . B y (*) the lowest t e r m of gi(u18,'...,'ti:r8) w i t h respect t o s is u{s. Thus the lowest t e r m of Z is c(w)$:

w.

c(u) = y^biWUi,

, 2 / - r l w i t h

provide degree the low O n the X(ZX~'

W(

over 7/(

i n £[/].

space ( extensi*

gular a t i o n 3.c zero th(

ing E ov

w i t h F quely <

P E

above ( 2>artf of

Pi- r a t i c f(

of C a *: Pfister n o w fc

P r W i t h o i

denotr

w i t h a.

If h(t) linear

(15)

q(oc)€xn fo r

polynomials polynomials (mates ci in

•)•] over L is k m. Assume

riables %i b y table linear

w i t h a n in-- j of K w i t h ) over k(u)

r 1 < i < r, ] over k(u) over k has as the f o r m

•h(ii, s) ^ 0 .omials i n s 'C i < r

'iSj ..., urs)

1 w i t h

provided c(u) ^ 0. B u t a glance o n the t e r m of lowest (or highest) t o t a l degree i n the p o l y n o m i a l c(u) makes evident, t h a t indeed c(u) # 0. T h u s the lowest degree w i t u respect t o s occurring i n the p o l y n o m i a l Z is 21+1.

O n t h e other h a n d the lowest degree of N is a n even number. Clearly A(ZN~]) = 0 or = oo. q.e.d.

W e n o w consider the following s i t u a t i o n : (/#(£)) is a bilinear space over k(t) = tr) w i t h indeterminates t{ a n d t h e f{j(t) polynomials i n k[t]. F u r t h e r g(t) is a p o l y n o m i a l i n k[t], w h i c h is represented b y t h e space {fij(t)) over k(t). F i n a l l y c is a n r-tupel w i t h coordinates i n a field extension L of k such t h a t the bilinear module (fq(c)) over L is n o n sin- gular a n d g(c) = 0 . If the zero c of g is n o n singular, t h e n b y P r o p o s i - t i o n 3 . 3 the space (/#(c)) over L must be isotropic. B u t if c is a singular zero then i t m a y v e r y well h a p p e n t h a t (fij(c)) i s anisotropic. The follow- ing Proposition 3 . 6 deals w i t h this case. E e c a l l t h a t a n y bilinear module E over L has a decomposition

E ^ FAX x (0)

w i t h F a n o n singular bilinear module, w h i c h u p t o isomorphism is u n i - quely determined b y E. W e call F the non singular part of E.

P R O P O S I T I O N 3 . 6 . Assume Char ft # 2 and that in the situation described above (fij(c)) is an anisotropic space over L and in particular c is a sin- gular zero of g. Then the space (ftj(c)) over L represents the non singular part of the bilinear module (apq), over L with

%q = i(d2g/dtpdtq)(c)..

E e m a r k . I n the special case t h a t a l l /#(£) are constant, g(t) is a quad- ratic form, a n d c = 0 , P r o p o s i t i o n 3 . 6 is the well k n o w n subform theorem of Cassels a n d Pfister ([10], p . 20). I n fact, t h e theorem of Cassels a n d P f ister provides t h e m a i n step i n the proof of P r o p o s i t i o n 3 . 6 , w h i c h now follows.

P r o o f . W e proceed on a similar w a y as i n the proof of P r o p o s i t i o n 3.5.

W i t h o u t loss of generality we assume k = L a n d c = 0. L e t h(t) = Yapqtptq

denote t h e Hessian f o r m of g(t), w i t h t h e apq f r o m above. W e have g(t) = h(t) + c(t)

w i t h a p o l y n o m i a l c(t) w h i c h o n l y contains monomials of t o t a l degree ^ 3 . If h(t) = 0, there is n o t h i n g t o prove. Thus we assume after a suitable linear transformation of coordinates that for some index m i n [1, r] a l l apq w i t h p > m or q > m are zero a n d t h e m a t r i x (apq), 1 < p, q < m

(16)

has determinant 0. I f m < r we obtain b y t h e principle of substitu- t i o n 2.5, t h a t t h e space (/^(tu tmJ 0, .... 0)) over A*(*x, tm) repre- sents g{tXJ 0 , 0). Thus we m a y assume without loss of gener- a l i t y f r o m t h e beginning, that the space (aPQ) over k is n o n singular.

W e again consider t h e fields K =k(t,s) = k(u, s) a n d k(n) con- structed i n t h e proof of Proposition 3.5. T h e space

over K represents t h e element

s~~2g(t) = h(u) + sc(u, s)

w i t h c(u, s) a p o l y n o m i a l i n s]. S u b s t i t u t i n g t h e value 0 for s we see b y 2.5, t h a t t h e space (/^(O)) over k(u) represents h(u). S o w t h e subform theorem of Cassels a n d Pfister yields t h a t t h e space (/#(())) over k represents t h e space (apq) over k. q.e.d.

§ 4 , The norm theorem. W e consider a f i x e d bilinear or q u a d r a t i c module E over a n a r b i t r a r y field it. W e call a n element a of V a norm of Ü7, i f (a)®E ^ J?, i.e. i f a is the n o r m of a s i m i l a r i t y transformation of JB. (If E is quadratic w i t h associated quadratic f o r m q t h e n (a)<g>E denotes t h e module E w i t h the quadratic form aq.) T h e set of norms

of E i s a group JST(E) w h i c h contains a l l squares i n k*.

The m a i n goal of this section is to prove t h e Theorem 4.2 below about the norms of E®k(t) w i t h k(t) = k(tu tr) the field of r a t i o n a l functions i n a n a r b i t r a r y number r of variables tx, ..., tr over k. F o r a n y p o l y n o m i a l f(t)ek[t] we denote b y /* the coefficient of t h e highest mo- n o m i a l occurring i n f(t) w i t h respect to t h e lexigraphical ordering.

( t ?1. . . # v > # . . . ^ i f a n d only if the first difference ^ - 6 , ^ 0 is > 0.) W e say t h a t / i s normed i f /* = 1 . Notice t h a t this n o t i o n depends o n the chosen ordering tt> t2>-.... >tr of t h e variables. W e further f i x the following notations for this section if r > 1: K denotes the field k(f) w i t h V = (t2f 2r), d e gx/ denotes the degree of / as a p o l y n o m i a l of K[txl

W e shall need t h e following

L E M M A 4.1. Assume that E is an anisotropic bilinear or quadratic module # 0. If a polynomial f{t)ek[t] is a norm of E®k(t) then the highest monomial occurring in f(t) has the form t™1 ... ifr with even exponents m{. Furthermore f* is a norm of E.

W e prove t h e l e m m a b y i n d u c t i o n o n r. Assume first r = 1 a n d write t instead of tx. W e consider the place /.: k(t)->kuoo over k w i t h X(t) = oo. Clearly E®k(t) represents a n element af(t) w i t h a i n k*. I f deg/ w o u l d be odd, t h e n the Propositions 3.2 a n d 3.4 w o u l d i m p l y t h a t E is isotropic. Thus deg/ is a n even number m, a n d hence

E®k(t)& (rmf(t))®(E®k(t)).

Fürthen the righ

Ass of / as i

is even to h. q.

F o r function of k[t]j\

T i n over k t Then tin

(i) ( « )

= const (in) If ( L e m m a since E group.

Olei.

Cor, Then a is a nor divide f

W e the case T o pro^

over k i to the i

we obta every n

defined

Referenzen

ÄHNLICHE DOKUMENTE

This assignment is due by Wednesday the 13th of January. Your solutions will be col- lected during the Wednesday’s lecture. Assume that there exists a countable basis B of

Abstract: In the spectrum sections of its &#34;Proposed Changes&#34; to the Review of the European Union Regulatory Framework for Electronic Communications Networks and Services,

 We are sorry to note that the goods (ordered) have not arrived yet..  We are

Adaptando la metodología que el DANE 14 aplica para el cálculo de intensidad tecnológica incorporada en las exportaciones colombianas, se encuentra que, entre los departamentos

Prove or disprove that the union (the intersection) of a set of stages is

study of the dynamics of market share’s growth are unable to capture the complex nature of growth dynamics. The paper then proceeds to show instead that the state of any market

Based on the work of Kummer in cyclotomic fields, Dedekind developed the theory of the ideal class group for quadratic field extensions, as well as a generalization of it to all

you already alulated the surfae area of