• Keine Ergebnisse gefunden

Stochastische Prozesse

N/A
N/A
Protected

Academic year: 2021

Aktie "Stochastische Prozesse"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Stochastische Prozesse

WS 15/16

Vorlesung: Prof. Dr. Thorsten Schmidt Exercise: Tolulope Fadina

http://www.stochastik.uni-freiburg.de/lehre/2015WiSe/inhalte/2015SoSeStochastische prozesse

Exercise 1

Submission: 22-10-2015

Let (Ω,F,P) be a probability space and (E,E) be a measurable space. LetX = (Xn)n≥0 be a sequence of random variables taking value in E. We callX a stochastic process in E.

A ltration (Fn)n is an increasing family of sub σ−algebras of F. i.e., Fn ⊆ Fn+1 for all n.

We can think of Fn as the information available to us at time n. Every process has a natural ltration (FnX)n given byFnX =σ(Xk, k≤n).

The processX is called adapted to the ltration(Fn)n, ifXn isFn-measurable for all n. Every process is adapted to a natural ltration. We sayX is integrable ifXn is integrable for alln.

Denition 1 (Martingale). A sequenceξ1, ξ2,· · · ,of random variables is called a martingale with respect to the ltration F1,F2,· · · ,if

(1) ξn is integrable for each n= 1,2,· · · (11) ξ1, ξ2,· · · ,is adapted toF1,F2,· · ·, (111) E[ξn+1|Fn] =ξn a.s.for each n= 1,2,· · ·

Denition 2. Let(ξk,k≥1)be i.i.d. (independent and identically distributed) random variables.

Then

Sn=

n

X

k=1

ξk, n∈N,

is a random walk. Random walks have stationary and independent increments, ξk=Sk−Sk−1 k≥1.

Stationary simply implies that the (ξk)k≥1 have identical distribution.

Denition 3. A process Xn, n ∈ N with stationary independent increments is called a Lévy process. i.e., the increment Xnk −Xnk−1 are independent and Xnk −Xnk−1 ∼ Xnk−nk−1, for k= 1,· · ·, n

Denition 4 (Markov chain). A discrete process {Xn, n = 0,1,· · · } with discrete state space Xn∈ {0,1,2,· · · }is a Markov chain if it has the Markov property

P[Xn+1 =j|Xn=i, Xn−1 =in−1,· · ·, X0 =i0] =P[Xn+1=j|Xn=i].

(2)

Problem 1. Let ξ ∈L1(Ω,F,P) and H ⊂ G beσ−algebras. Show that

E[E[ξ|G]|H] =E[ξ|H] a.s. (1)

Problem 2. Show that if ξ = (ξn)n≥1 is a martingale with respect toF = (Fn)n≥1, then E(ξ1) =E(ξ2) =· · ·.

Hint: What is the expectation of E(ξn+1|Fn)?

Problem 3. Suppose thatξ= (ξn)n≥1is a martingale with respect to the ltrationG= (Gn)n≥1. Show thatξ is a martingale with respect to the ltration

Hn=σ(ξ1,· · ·,· · · , ξn)

Hint: Observe thatHn⊂ Gn and use the tower property of conditional expectation, (1).

Problem 4. Let ξ = (ξk)k≥1 be independent and inL1 (see Denition (2)) show that

Sn0 =

n

X

k=1

k−E[ξk])

satises the Martingale property.

Problem 5. Given a martingale (Sn)n≥1, show that

E[Sn|Fm] =E[Sn|Sm], form < n which implies the Markov property.

Referenzen

ÄHNLICHE DOKUMENTE

1 (Geben Sie auf jedem L¨ osungsblatt Ihren Namen und Ihre ¨ Ubungsgruppe an... Bitte nur maximal zu

Zeigen Sie: Wenn X unabh¨ angige und station¨ are Zuw¨ achse besitzt, dann ist X ein Poisson- Prozess, d.h.. Sei S eine beliebige

d) Jeder abgeschlossene Teilraum eines polnischen Raums ist polnisch.. Aufgabe 32

Hinweis: Sie d¨ urfen ohne Beweis die analoge Aussage zu Satz 2.13 f¨ ur gestoppte Martingale in stetiger.

Die ¨ Ubungsaufgaben sowie weitere Informationen zur Vorlesung finden Sie auf der

[r]

Die ¨ Ubungsaufgaben sowie weitere Informationen zur Vorlesung finden Sie auf der

Stochastische Prozesse WS 15/16..