• Keine Ergebnisse gefunden

Bridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwide

N/A
N/A
Protected

Academic year: 2022

Aktie "Bridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwide"

Copied!
10
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

COSUST8431–10

Pleasecitethisarticleinpressas:TangT,etal.:Bridgingglobal,basinandlocal-scalewaterqualitymodelingtowardsenhancingwaterqualitymanagementworldwide,CurrOpinEnvironSustain (2018),https://doi.org/10.1016/j.cosust.2018.10.004

Bridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwide

Ting Tang

1

, Maryna Strokal

2

, Michelle TH van Vliet

2

, Piet

Seuntjens

3,4,5

, Peter Burek

1

, Carolien Kroeze

2

, Simon Langan

1

and Yoshihide Wada

1,6

Globalwaterquality(WQ)modelingisanemergingfield.Inthis article,weidentifythemissinglinkagesbetweenglobaland basin/local-scaleWQmodels,anddiscussthepossibilitiesto fillthesegaps.WearguethatWQmodelsneedstronger linkagesacrossspatialscales.Thiswouldhelptoidentify effectivescale-specificWQmanagementoptionsand contributetofuturedevelopmentofglobalWQmodels.Two directionsareproposedtoimprovethelinkages:nested multiscaleWQmodelingtowardsenhancedwater

management,anddevelopmentofnext-generationglobalWQ modelsbased-onbasin/local-scalemechanistic

understanding.Wehighlighttheneedforbettercollaboration amongWQmodelersandpolicy-makersinordertodeliver responsivewaterpoliciesandmanagementstrategiesacross scales.

Addresses

1InternationalInstituteforAppliedSystemsAnalysis(IIASA),Laxenburg, Austria

2WaterSystemsandGlobalChangegroup,WageningenUniversity&

Research,Wageningen,Netherlands

3UnitEnvironmentalModeling,FlemishInstituteforTechnological Research,Mol,Belgium

4InstituteofEnvironmentandSustainableDevelopment,Universityof Antwerp,Antwerp,Belgium

5DepartmentofEnvironment,GhentUniversity,Ghent,Belgium

6DepartmentofPhysicalGeography,UtrechtUniversity,Utrecht, Netherlands

Correspondingauthor:Tang,Ting(tangt@iiasa.ac.at)

CurrentOpinioninEnvironmentalSustainability2018,36:39–48 ThisreviewcomesfromathemedissueonGlobalwaterquality EditedbyNynkeHofstra,CarolienKroeze,MartinaFlo¨rke,Michelle vanVliet

https://doi.org/10.1016/j.cosust.2018.10.004 S1877-3435/ã2018ElsevierLtd.Allrightsreserved.

Waterquality modelingat differentspatial scales: themissing linkages

Theworld’swaterresourcesareunderincreasingthreats fromawiderangeofpollutants,resultingindeteriorating water quality in rivers, lakes, aquifers and seas [1–4].

Deteriorating water quality limits water availability for various human uses and ecosystem functioning [5,6].

Moreover, globalwater demandhasincreasedconsider- ablyinthepastdecadesandthetrendwillcontinueinto futuredecadesduetopopulationandeconomicgrowth, resultinginincreasingwaterandfooddemands[7,8].The combinationofdeterioratingwaterqualityandincreasing water demand poses increasing challenges to address water scarcity and water resources management under future socioeconomic and climate changes [9]. Water quality(WQ)modelingplaysanimportantroleinbetter understanding themagnitude andimpact of WQissues andin providingevidenceforpolicy-makingandimple- mentingmeasuresto mitigatewaterpollution.

WQ modeling of surface water takes place at different spatial scales, ranging from individual field-stream to globalmodelingoflandsurfacesandwaterbodies(exam- ples in Table 1, and see [10–17] for comprehensive reviews)withdiversemodelingpurposesandapproaches.

WQmodeling inrivers datesbackto the1920s[16,17], whileitevolvedbyincludingpointsourcesandlandscape transport of non-point source (NPS) pollutants in the 1970s[12,13].With mostglobal WQmodelsdeveloped in thepasttwodecades[18],globalWQmodelingisan emerging field compared with basin/local-scale WQ modeling. Inthis article, theterm “scale”refers to the designed spatial coverage of a model, while the finest model discretization is referredto as “resolution” (e.g., grid). Wetake “local-scale”modeling to referto point- scale,field-scale,instreamtransportmodelingandmodel- ing of technical components (e.g., BNRM2 [19] for wastewater treatment plants, WWTP). “Basin-scale”

modelingreferstoWQsimulationforasingleriverbasin, includingbothlandscapeand instreamWQmodeling.

Local-scale WQ models (e.g., [20,21]) are often devel- oped to quantify and better understand the Availableonlineatwww.sciencedirect.com

ScienceDirect

www.sciencedirect.com CurrentOpinioninEnvironmentalSustainability2018,20:1–10

(2)

quality

inpressas:TangT,etal.:Bridgingglobal,basinandlocal-scalewaterqualitymodelingtowardsenhancingwaterqualitymanagementworldwide,CurrOpinEnvironSustain1016/j.cosust.2018.10.004

Example modelsaof different spatial scales discussed in this article

Spatial scale Example models Simulated water quality parameters References

Global GlobalNEWS-2 (Global Nutrient Export from WaterSheds 2) Different forms of carbon, nitrogen & phosphorus [33,48]

Global IMAGE-GNM (IMAGE-Global Nutrient Model) Total nitrogen and phosphorus [40]

Global VIC-RBM (Variable Infiltration Capacity - River Basin Model for water temperature)

Water temperature [38,39]

Basin BASINS (Better Assessment Science Integrating point & Non- point Sources), with watershed (basin) sub-models:

HSPF (Hydrological Simulation Program - FORTRAN),

SWAT

SWMM (Storm Water Management Model) PLOAD (Pollutant Loading Estimator), etc.

and instream sub-models AQUATOX,

WASP (Water Quality Analysis Simulation Program)

Dissolved oxygen, biological oxygen demand, sediment oxygen demand, pH, alkalinity, nutrients, algae, zooplankton, coliform bacteria, etc.

[25]

Basin SWAT (Soil and Water Assessment Tool), with sub-models:

EPIC (Erosion-Productivity Impact Calculator) for sediment yield,

CREAMS (Chemicals, Runoff, and Erosion from Agricultural Management Systems) for chemical runoff from agriculture, adapted QUAL2E (Enhanced Stream Water Quality Model) for

instream nutrient routing

adapted GLEAMS (Groundwater Loading Effects on Agricultural Management Systems) for pesticide transport and fates, etc.

Sediment, different forms of nitrogen and phosphorus, algae, biological oxygen demand, pesticides, bacteria and heavy metals

[24,26]

Basin HYPE (HYdrological Predictions for the Environment) Organic carbon, total nitrogen and phosphorus & water temperature (as a tracer)

[23,55]

Basin SimplyP Sediment and phosphorus [57]

Local: Field to small watershed

APEX (Agricultural Policy Environmental Extender) Sediment, different forms of nitrogen and phosphorus, and pesticides

[20]

Local: Field(s) DAISY Carbon, nitrogen and pesticides [21]

Local: Wetland WETSAND (Wetland Solute Transport Dynamics) Different forms of nitrogen and total phosphorus [72]

Local: WWTP BNRM2 (Biological Nutrient Removal Model No. 2) Nitrogen and phosphorus (removal in WWTP by biological processes)

[19]

aFor comprehensive reviews of WQ models, see [10,11]) for global WQ modeling, [12–15] for basin-scale and local-scale WQ modeling and [16,17] for instream WQ modeling.

inEnvironmentalSustainability2018,20:1–10www.sciencedirect.com

(3)

biogeochemical processes for given WQ parameters on landandinwaterbodies,andtoassesstheeffectivenessof management measures [12,19]. They are often either mechanisticorempiricalwithparametersreflectinglocal biogeochemicalcharacteristics(e.g.temperature,organic mattercontent).Empiricalmodelshavelimitedassocia- tionstoorassumptionsfortheunderlyingbiogeochemical mechanisms (e.g., Freundlich equation for pollutant adsorption onto soil[22]), which are often data-driven, and can be statistical when statistical relationships are constructed.Mechanistic modelsdescribe systembeha- viors using biogeochemical parameters and attempt to incorporate known mechanisms of system behaviors underlying the observational data. In principal, they canpredictsystembehaviorsunderchangestothemod- elled system. Understanding of the underlying biogeo- chemicalmechanismsandprocesses(mechanisticunder- standing)andtheirmathematicaldescriptionsfromlocal- scalemodels(e.g.,pH/temperature-dependentfirst-order denitrification) are the basis for basin-scale modeling.

The aim of basin-scale modeling is diverse, but could belargelyconsideredas tobetterunderstand underpin- ning sources,transformations andtransport mechanisms in ordertomanagethetargetedsysteminanintegrated manner.Contemporarybasin-scaleWQmodelstypically incorporate local-scale modeling and experimental approachesinsimplifiedmanners[13],andaretherefore often (semi-)mechanistic(i.e., mechanistic or hybrid of empiricalandmechanisticapproaches)andprocess-based (e.g.,[23–26]),namelywithexplicitdescriptionsofdomi- nant individual processes based on mechanistic understanding.

Globalandmulti-basin(e.g.,continental-scale)WQmod- els typically aimto understand thestate(e.g.,pollution hotspots and theircauses) andspatiotemporal trendsof WQissuesin aconsistentmanner undermultipleinter- activedrivers.GlobalWQmodelsarenecessarybecause waterpollutionisanincreasingglobalconcernandglob- ally consistent WQ assessments are needed to identify global WQ hotspots and trends, especially in regions whereWQdataisinsufficientforadetailedassessment.

Furthermore, global WQmodels can account for large- scale drivers that are difficult to capture in basin-scale models.Hoekstra[27]stressedthatwaterpollutionisso heavily intertwined with the global economy that it cannotbedealtwithindependentlyfromglobaleconomy.

Global WQ modelscanelucidate theinterplays among drivers[e.g.,28],suchasclimatechangeandvirtualwater and pollution transfer related to international trade [27,29,30] and assess their impacts on water quality.

Forexample,studieshighlightedtheimportanceofinter- nationaltradeoffoodandanimalfeedonglobalnutrient cycling [29,31]andriverorganicpollution [32].

Dueto practicalconstrains,suchasdataavailability and computational costs, global WQ models (e.g., [33–36])

relyonheavilysimplifiedrelationships(e.g.,exportcoef- ficient approach to estimate landscape nutrient reten- tion). Theserelationships are often of empirical nature becausetheyarederivedfrombasin/localdataandasso- ciatedrelationshipsindata-richregions,anddonotnec- essarilyreflecttheunderlyingbiogeochemicalprocesses duetotheheavysimplifications.GlobalWQmodelingare currently moving towardshybrid approaches. However, this islimitedto WQ parameterswith relativelysimple drivers,sourcesorprocessesandwithgooddataavailabil- ity,suchaswatertemperature(i.e.,PCRGLOB-WB[37]

andVIC-RBM[38,39])andnutrients(i.e.,IMAGE-GNM [40]). The selection of empirical or mechanistic approaches dependsonthe modelingpurposes and the associated dataavailability. Withtheincrease of spatial scale, generally simplified relationships with less rele- vance to the underlying processesare more often used accompanied by lower spatiotemporal resolutions and modelcomplexity(Figure1).Ononehand,suchsimplic- ity or empirical nature is justified because global-scale modelsare intendedto identifyhotspots andlong-term trends, which are in relative terms and hence arguably requirelowerquantificationaccuracy.Empiricalmethods havemeritsintheirlimiteddatarequirements,whilestill being frequently characterized by high levelsof model accuracy[41].Ontheotherhand,modeldevelopersneed to make sure the approaches are sufficient for the intendedpurposesofglobalWQmodels,especiallywhen potentialeffectsofchangestothemodelledsystemareof interest.

Missinglinkage1:GlobalWQmodelsneedsufficient considerationofbasin/local-scalemechanistic understanding

TheheavilysimplifiedrelationshipsinglobalWQmodels result in difficulties to satisfy their designed modeling purposes in some cases. Such relationships are often developed usinghistoricaldataof specificlocationsand climateconditions. For example,nutrient loss/retention fractionalongtherivernetworkinGlobalNEWS-2(LF)is estimated either using a constant or as a function of channeldrainagearea,whichwerederivedfromobserva- tionsintheUnitedStates[33].TheglobalCryptosporid- ium model (GloWPa) estimates NPS Cryptosporidium runoff fraction frommanure usinga methoddeveloped for Europe [34]. The critical question here is, are the relationships transferrable from data-rich to data-scarce regions and to future conditions under global changes (transferability issue)? The transferability issue is not uniquetoglobalmodelsorWQmodeling.Ithaswidely been discussed in, for example, ecological modeling [42,43]. Although we do not have a concrete example todemonstratetheissueinglobalWQmodels,oneshould not rule outits potential existence and impacts. Basin/

local-scale mechanistic understanding helps to under- stand and potentially address the issue. However,a lot more efforts are needed to properly incorporate basin/

Bridgingglobal,basinandlocal-scalewaterqualitymodelingtowardsenhancingwaterqualitymanagementworldwideTangetal. 3 COSUST8431–10

Pleasecitethisarticleinpressas:TangT,etal.:Bridgingglobal,basinandlocal-scalewaterqualitymodelingtowardsenhancingwaterqualitymanagementworldwide,CurrOpinEnvironSustain (2018),https://doi.org/10.1016/j.cosust.2018.10.004

www.sciencedirect.com CurrentOpinioninEnvironmentalSustainability2018,20:1–10

(4)

local-scaleknowledgeintoglobalWQmodels,inorderto haveareasonablebalanceamongmodelcomplexity,data demand and availability. Kroeze et al. [44] called for mechanisticglobalnutrientexportmodelsandcombining thestrengthsofbasin-scalemodels.Global(semi-)mech- anistic models already exist for water temperature and nutrients,buttheeffortsshouldextendtowardsotherWQ parameters,suchasoxygendemand,pathogensandpes- ticides. Although we do not argue for highly complex mechanistic global WQ models, global WQ models should incorporate mechanistic understanding from basin/local-scaleWQmodelstotacklethetransferability issue.

Missinglinkage2:GlobalWQmodelsarerarely consideredinwater-relatedpolicy-makingorwater management

Water quality management and water governance are multiscale issues [45], ranging from local measures (e.

g.,vegetatedfilterstocontrolerosion[46])toriverbasin plans(e.g.,Danube[47]),internationalpolicies(e.g.,EU WaterFrameworkDirective)andglobalpolicyagenda(e.

g,SustainableDevelopmentGoals,SDGs).Modelsneed to mirror this policy need for multiscale management.

Globalmodels,suchasGlobalNEWS-2[33,48],WorldQ- ual[49]andIMAGE-GNM[40],accountforawiderange of pollutant sources (e.g., agricultural, domestic and

industrial), associated socio-economic and climate dri- vers. These models are therefore appropriate tools to pinpoint the dominant drivers and pollutant sources, which guides policy-making for pollution abatement at thehighestadministrativelevel(e.g,internationalguide- linesand national policies).However, theactual use of globalWQmodelsinpolicy-makingisrare,exceptforone case where WorldQual provided an assessment of WQ statusin South America,AfricaandAsiafor theUnited NationsEnvironmentProgramme (UNEP) [1]. Policies atthehighestadministrativelevelneedtobeimplemen- tedatthebasinorloweradministrative(e.g.,provincialor national) level, wherein basin-scale models are more appropriate. Implementation of mitigation measures or infrastructural development are at even smaller scales, which requires local-scale models. Linking global WQ models with basin/local water management models is thereforeidealtofacilitatemanagement,butisveryrare toourknowledge, althoughbasin/local-scalemodelsare often coupled for management purposes. Meanwhile, localmanagementmeasuresandbasin-scalemanagement plansare expected to influence waterquality dynamics and therefore should be considered as feedback into large-scalepolicy-makingandWQmodeling.WQmodels shouldtherefore be actively linkedacross spatialscales andsupporteachothertoensureresponsivepolicy-mak- ingandeffectiveWQmanagement.

Figure1

Spatial Sacle Temporal

Resolution

Process Description Model Complexity Yearly

Daily

Global

Basin

Local Sub-daily

Empirical/

Statistical

Process-based hybrid

Mechanistic physically-based

Empirical/

Statistical

Process-based hybrid

Mechanistic physically-based Low

Low High High

Global NEWS-2 IMAGE-GNM Global NEWS-2 IMAGE-GNM

BASINS

BASINS

HYPE & SWAT

HYPE & SWAT VIC-RBM

VIC-RBM APEX

APEX DAISY

DAISY

WETSAND WETSAND

BNRM2 BNRM2

SimplyP

SimplyP

Current Opinion in Environmental Sustainability

IllustrativeoverviewofthecontinuumofWQmodeltypesbasedonprocessdescriptionandthecorrespondingmodelcomplexityand

spatiotemporalscale,withexampleWQmodelsfromTable1.Allaxesarecontinuouswithtwoendpointsandimportantmid-pointsdiscussedin thepaperareaddedforprocessdescription,temporalresolutionandspatialscale.PartiallybasedonBouwmanetal.[67].Notethat“spatial scale”hereinreferstothedesignedspatialcoverageofamodelratherthanitsspatialresolution.

CurrentOpinioninEnvironmentalSustainability2018,20:1–10 www.sciencedirect.com

(5)

Filling thegap: a proposedframeworkto bridge WQ modelingacross scales

Theframework

Weproposeaframeworkwithtwodirections(Figure2)to addressthemissinglinkagesoutlinedinSection1.Firstly, wearguethatanestedmultiscaleWQmodelingapproach isneededforWQmanagement,whereinglobalmodeling isactivelyaccountedforinlong-termpolicy-making,river basinmanagementandlocalmeasures,andthelattertwo are considered as feedback in policy-making and WQ models at the global scale. The multiscale approach therefore also considers the interactions and linkages among multiple spatial scales. Secondly, considering thesimplicityandpotentialimplicationsofcurrentglobal WQ modeling approaches, we argue that mechanistic understanding from basin/local-scale models should be betterusedtodevelopthenextgenerationofglobalWQ models. Improvements of the current modeling approachesareneededtoensurethereliabilityofmodel predictionsunderlong-termchangesandtoincludefeed- backsfromlocalandbasinmanagementpractices.There- fore,thenext-generationWQmodellingisnotonlyabout improving global WQ models, but also about bringing models of different scales together to develop flexible frameworks with scaling issues (e.g., non-linearity and

interactions among scales) considered. The latter can facilitate nested multiscale modeling for WQ manage- ment.Wenotethattheproposeddirections aredemon- strationsof importantlinkagesbeneficialfor waterman- agementandarethereforenotintendedtorepresentthe fullspectrumofpossible linkages.

NestedmultiscaleWQmodelingtowardsenhanced waterqualitygovernanceandmanagement

TheSDGsrepresentonepolicyagendaatthelargest(i.e., global) scale.SDG6(cleanwaterand sanitation)Target 6.3 sets out to improve ambient water quality of the world’s water bodies. GlobalWQ modeling comes into playhereandprovidesagloballyconsistentassessmentof spatial hotspots, source attribution and underpinning driversofthestatusandfutureprojectionsunderdifferent climate and socioeconomic scenarios. This is currently notpossibleusingapproachessuchas globalmonitoring due to limited data and capacities in least developed countries[50].SuchassessmentfromglobalWQmodels helps international organizations, such as the World HealthOrganizationandUNEP,todevelopinternational frameworks and set global agendas(e.g., SDGs),which provide potentialentry pointsformanagement. Thanks to close contacts with different countries, international

Bridgingglobal,basinandlocal-scalewaterqualitymodelingtowardsenhancingwaterqualitymanagementworldwideTangetal. 5 COSUST8431–10

Pleasecitethisarticleinpressas:TangT,etal.:Bridgingglobal,basinandlocal-scalewaterqualitymodelingtowardsenhancingwaterqualitymanagementworldwide,CurrOpinEnvironSustain (2018),https://doi.org/10.1016/j.cosust.2018.10.004

Figure2

Spatial scale

Global

Basin

Local

Multiscale modeling for effective WQ management

Knowledge “upscalling” toward next-genertaion global WQ models

Examples models

Global NEWS-2

SWAT

APEX

DAISY

Scaling issue

including cross-scale interactions

Representative modeling purposes

Identify hotspots and trends

Assess management plans

Understand mechanisms

Responsive policy-making Process

based parsimonious global WQ models

Identifying critical components, processes

and biogeochemical parameters

Understanding fundamental processes and mechanisms

Implementation of local management/

technological measures Global policy agenda Regional policy-making

Integrated river basin management plans (long- term strategic decision-making)

Current Opinion in Environmental Sustainability

TheproposedframeworktoimprovethelinkagesofWQmodelingatdifferentspatialscales,fromaglobalWQmodeldevelopment(lefttriangle) andwaterqualitymanagement(righttriangle)perspective.ExamplesofWQmodelsatdifferentscalesarepresented.

www.sciencedirect.com CurrentOpinioninEnvironmentalSustainability2018,20:1–10

(6)

organizations should use this knowledge as a strong message to pushheavily polluting countries, especially oftransboundary basins,toaddress thepollutionissues, and to better advice national or regional (e.g., multi- national or transboundary basins) policy-makers on implementingenvironmentallysoundpolicies andman- agementpractices.

Basin/local-scale models provide more detailed assess- ments of WQ issues, based on better local data and contextwherein theissues needsto bemanaged.From this,detailedmanagementstrategiescanbedesignedand implemented.Forexample,Coolsetal.[51]coupledthe basin-scaleWQmodelSWATwithaneconomicoptimi- zationmodeltoselectthemostcost-effectivemeasuresto reduceinstreamnitrogenconcentrationfromalargerpool ofmeasuresinthedraftmanagementplanfortheScheldt basininBelgium.BASINS[25]wasdevelopedtoassistin basin-scale management e.g., by developing the total maximum daily loads for each pollutant into impaired water bodies, which is legally required by the United StatesCleanWaterAct[52,53].Thesetypesofinforma- tioncallfor implementation atthelocal scale,to either specificareas(e.g.,vegetatedfilters[46])ortechnological improvement(e.g.,WWTPs).Whetheritisbestmanage- ment practices in agricultural settings or low impact development measures in urban environments, local models are most appropriate to evaluate the potential effects of such measures and therefore contribute to implementingthemostcost-effectivemeasurestofulfill basinorglobal-scale targets.

Basin/local-scalemechanisticunderstandingfornext generationofglobalWQmodels

Basin-scaleWQmodels,suchasSWATandHYPE,have successfully been applied at the continental scale [54,55]. In principal,theycanbeappliedattheglobalscaleinasimilar manner. However, a few challenges may hinder direct upscaling. Firstly, many basin-scale (semi-)mechanistic WQ models are over-parameterized with at least some not-readilymeasurableparameters(e.g.,nutrientpercola- tioncoefficientsin SWAT),and have beencriticized as overly-complexcomparedwiththeavailableobservations toparameterizethemodels[56,57].Evenifsufficientlocal monitoringdataareavailable,over-parameterizationeasily leads to large model uncertainties [58,59]. Secondly, current applicationsofbasin-scalemodelstothecontinentalscale arelimitedtodata-richregions(e.g.,Europe).WQmoni- toringdataandmodelinputdata(e.g.,fertilizer/pesticide applicationdata)are,however,scarceinmanyotherregions (e.g., Africa and south Asia) [1]. This complicates the assessment of global model reliability in these regions.

Lastly, the increasing need to holistically address cli- mate-water-land-food-ecosystem nexusissues drives the development of integrated modeling frameworks (e.g., IMAGE),whichfurtherincreasecomplexityandpropagate uncertainties[60].Consequently, itis hardlyjustifiedto

directlyemploybasin-scale(semi-)mechanisticWQmod- elsattheglobalscale.

Similar constrains exist for global hydrological models (GHMs),wherein basin-scalemodelsarerarelyusedfor globalapplications[61],althoughmechanistichydrologi- cal models are available for mesoscale catchments and currentlybeingupscaledto basinandcontinentalscales [62]. After several iterations of developments, current GHMshavesimilarprocessestobasin-scalehydrological models,butdifferconsiderablyintheircomplexity,rang- ing from bucket-type empirical approaches to hybrid approaches[61,62].Toincreasemodelaccuracy,GHMs are moving towards higher spatiotemporal resolution [61,62] and more mechanisticrepresentations of impor- tantprocesses,suchasreservoiroperations[63],ground- water routing [8] and floodplain processes [62]. Model inter-comparisonof GHMsisusedtoexposeuncertain- tiesininputdataandmodelstructure(i.e.,representation of processes) [64,65], and therefore help to improve relevant processesbased onmechanisticunderstanding.

Such improvements are accompanied by the improved data availability, especially from Remote Sensing (RS) products (e.g., for evapotranspiration, terrestrial water storages and their changes) [61]. Similar to current GHMs, we argue that process-based parsimonious approaches should bethe basicprinciplein developing thenext generation of global WQmodels bybalancing modelingpurposesanddataavailabilitywhilemakinguse of basin/local-scale mechanisticunderstanding. A parsi- moniousapproachusesthesimplestapproachthatfitsthe modelingpurposeandavailabledata.

Aflexiblenext-generationglobalWQmodelingframeworkby buildingaprocess-basedparsimoniousmodel

Processdescriptioninaprocess-basedglobalWQmodel can be empirical or mechanistic, but should include system responses to altered environmental conditions tocapturefutureglobalchanges.Aprocess-basedmodel is therefore generally hybrid and modular (Figure 1).

Withsufficientgoodqualitydata,itcanoffermorerobust predictionsunder globalchangesthanempiricalmodels [42],while avoiding issues of mechanisticmodels. The modularitymeansthemodelcanbehighlyflexibleanda modelingframeworkcanbeeasilyconstructedwithmul- tipledescriptions of eachprocess or for multiple pollu- tants.Onecanthereforenavigateamongdifferentmodel structuresandoptimizethestructuretoher/hisowndata/

needs. Given the complexity of WQ-related processes, prioritizationof components and processesin the mod- elled system becomes essential to ensure model parsimony.

ParsimoniousglobalWQmodelsthroughprioritization, simplificationandparameterregionalization

Onewayofachievingparsimonyistosimplifybasin/local- scale WQ modeling approaches with a stepwise

CurrentOpinioninEnvironmentalSustainability2018,20:1–10 www.sciencedirect.com

(7)

prioritization. With basin/local-scale models, one can follow three steps: 1) identify basin-scale maincompo- nentsinfluencingpollutanttransport(e.g.,riverchannels, lakes, riparian wetlands), 2) assess dominant processes within the main components influencing pollutant dynamics (e.g., sedimentation, biodegradation), and 3) identifycriticalbiogeochemicalparameters(e.g.,pH,soil organiccarbon) forthedominantprocesses.

Withthisprocedure,onecanprioritizeandnarrowdown to thecriticalcomponents,processesandparametersfor globalWQmodels.Noteworthy,arelativetermisneeded in component and process prioritization (Steps 1&2).

Riverbasinshavedifferentpollutantsourcesandphysical characteristics (e.g., extent of wetland, length of river network). These characteristics should be normalized when identifying dominant components and processes thatarerelevantatspatiotemporalscalesappropriatefor global WQmodeling. The spatiotemporal resolution of global WQmodelingis typicallylower thanbasin/local- scaleWQmodels(Figure 1&[11]).Consequently,care should betakenduring componentand processprioriti- zation in order to identify the predominant processes relevantattheglobalscaleandaccountforscalingissues (e.g., non-linearity and interactionsamong scales). Fur- ther discussions onthe scaling issue are available else- where for landscape pollutant modeling [12,66] and instream transport modeling [67]. Statistical, empirical or simplifiedmechanisticrelationshipscanthereafterbe constructedfordominantprocessesusingeitherexisting large-scaleobservationsorexistingbasin/local-scalerela- tionships. Sensitivity analysis is one of the effective meanstoidentifycriticalparameters(Step3).Oneimpor- tant consideration in Step 3 is to use easily-accessible measurablebiogeochemicalorhydro-climaticparameters or their measurable proxies whenever possible. This reduces the challenge to parameterize the model and partlycompensatesthetransferabilityissueforempirical or statistical relationships. Parameter regionalization is another opportunityto parameterize data-scarceregions inglobalWQmodels,althoughitiscurrentlymainlyused in hydrological modeling [68]. The regionalization approachattemptstotransferinformationfromdata-rich areastodata-scarceareasbasedonsimilaritiesamongthe areasor statisticalrelationshipsbetweenmodelparame- ters and basin attributes(e.g., topography, soil)[68,69].

For example,basedonclimaticandphysiographicsimi- larities, calibrated parameter sets from 674 basins by a GHM weretransferredtoanother1113basins,resulting inglobalparametermapsforfollow-uphydrologicalsim- ulation [68].

Asanexampleforthewholeprocedure,riparianwetlands efficiently remove or retainpollutants (sediment,nutri- entsandheavymetals,Step1)[70].Denitrificationisthe main nitrogen removal process in wetlands (Step 2), which is controlled by sediment oxygen content,

retention time, nitrate loading, pH and temperature, amongothers[70,71].IMAGE-GNMestimatesdenitrifi- cationbyriparianwetlandsusing8parameters,including pH, temperature, riparian zone thickness, travel time, flow rate andsoilproperties[40].Theseparametersare relatively easy to obtain or estimate, compared with highly spatial-variable biogeochemical parameters (e.g., denitrificationrate).However,foraprocesswithnoglobal datatocalibrate,thenumberofparametersseemstobe rather high. Step 3 (identifying critical biogeochemical parameters)usingsensitivityanalysisofIMAGE-GNMor wetlandmodels(e.g.,WETSAND[72])couldbethenext step to avoid over-parameterization and simplify the model.

Challenges and futureoutlook

Thispaperproposesthatanestedmultiscaleapproachof globalWQmodelsbasedonmechanisticunderstandingis needed in order to provide reliableresults that can be actively used in policy-making and water management across scales. Two main challenges exist in providing reliable resultsand translatingthemintopolicies.

Dataavailabilityremainsthebiggestchallengeforglobal WQmodelingandmanagement

Goodquality,freelyavailableandeasilyaccessibleglobal datasetsareessentialforglobalWQmodelingintermsof modelinputs(e.g.,pollutantsources,sanitationandtreat- ment level) and monitoring data for model evaluation.

Globaldatabasesexistonsocioeconomicdriversandtheir futureprojections(summarized in[10]).However,large uncertainties exist in estimatingpollutant sources (e.g., dischargefromhumanwaste)fromthedrivers.Available global monitoring datasets have limited data for many developing regions (e.g., Africa) and limited temporal coverage (e.g., http://www.worldwaterquality.org/ and http://portal.gemstat.org/). Significant efforts are still in needfor data-scarceregionstodeveloptheirmonitoring capacity. Anemergingopportunitytoaddress datalimi- tation is high-resolution hyperspectral RS techniques, which are used for large-scale monitoring of optically- active WQparameterssuchas turbidity, salinity,chloro- phyll-aanddissolvedoxygen[73,74].RSdatacanpoten- tiallyimprovedataavailabilityattheglobalscalethatis consistentwithbasin/local-scaledatafor optically-active WQparameters.

Activecollaborationamongcommunitiesiscriticalto advancewaterqualitymanagementacrossscales Severalcriticalquestionsmayariseduetodatalimitation inglobalWQmodeling.Firstly,howcanmodelreliability andtheassociatedmodeluncertaintiesbeassessedwith- out sufficient input or observational data? Secondly, to whatextendcanpolicy-makersmakedecisionsbasedon themodelingresultsandassociateduncertainties?While improving model reliability is fundamental for using global WQ models in policy-making and WQ

Bridgingglobal,basinandlocal-scalewaterqualitymodelingtowardsenhancingwaterqualitymanagementworldwideTangetal. 7 COSUST8431–10

Pleasecitethisarticleinpressas:TangT,etal.:Bridgingglobal,basinandlocal-scalewaterqualitymodelingtowardsenhancingwaterqualitymanagementworldwide,CurrOpinEnvironSustain (2018),https://doi.org/10.1016/j.cosust.2018.10.004

www.sciencedirect.com CurrentOpinioninEnvironmentalSustainability2018,20:1–10

(8)

management,activecommunicationandcollaborationare also required among policy-makers and modeling communities.

Duetothepropagationofpredictionerrorsfromclimate and hydrological modelsand high variability of biogeo- chemicalprocesses,WQmodelsaresubjecttorelatively largeuncertainties[60].TheglobalWQmodellingcom- munity needs to be explicit on model uncertainties, explorethedifferentsourcesofuncertaintiesandaddress them accordingly to facilitate the use of global WQ modelsin evidence-basedpolicy-making. One example is to conduct model inter-comparison to reveal and addressmodelstructuraluncertainties[11],whichisoften usedin climatescience and GHMs [64,75,76].Work is neededattheinterfaceofresearch intopolicyto better portrayuncertaintiessothattheyareunderstandableby decision-makersandcanbeproperlyconsideredinglobal agendasand national/regionalpolicies [e.g,77].Inaddi- tion,WQmodelersneedtofullyrecognizethatmodeling purposesdifferdependingonthespatialscales,leadingto different modeling approaches and advantages. Such differences are the reasons why a nested multiscale approachbenefitswatermanagement.Wethereforecall foractiveknowledgeexchangeandcollaborationamong different modeling communities despite the seemingly differentquestionsaddressedbyWQmodelsofdifferent spatialscales.

Acknowledgements

Thisarticleevolvedfromaworkshoptitled“WaterQuality:anewchallenge forglobalscalemodelling”heldatWageningenUniversityandResearchon 18-21September2017andfundedbytheCo-operativeResearch ProgrammeoftheOrganizationforEconomicCo-operationand Development(OECD-CRP).TangT.isfinanciallysupportedbythe IntegratedSolutionsforWater,EnergyandLand(IS-WEL)project,fundedby theGlobalEnvironmentFacility(GEF,ContractAgreement:6993)and supportedbytheUnitedNationsIndustrialDevelopmentOrganization (UNIDO).Theauthorsthankthetwoanonymousreviewerswhose constructivecommentshelpedtoimproveandclarifythemanuscript.We acknowledgethesupportbytheInternationalInstituteforAppliedSystems Analysis(IIASA)fortheopenaccesspublishingofthearticle.

References

1. UNEP:ASnapshotoftheWorld’sWaterQuality:TowardsaGlobal Assessment.UnitedNationsEnvironProgram;2016.162pp.

2. LoosR,GawlikBM,LocoroG,RimaviciuteE,ContiniS,BidoglioG:

EU-widesurveyofpolarorganicpersistentpollutantsin Europeanriverwaters.EnvironPollut2009,157:561-568.

3. StehleS,SchulzR:Agriculturalinsecticidesthreatensurface watersattheglobalscale.ProcNatlAcadSci2015,112:5750- 5755.

4. AvioCG,GorbiS,RegoliF:Plasticsandmicroplasticsinthe oceans:Fromemergingpollutantstoemergedthreat.Mar EnvironRes2017,128:2-11.

5. GlibertPM:Eutrophication,harmfulalgaeandbiodiversity- Challengingparadigmsinaworldofcomplexnutrient changes.MarPollutBull2017,124:591-606.

6. SchwarzenbachRP,EgliT,HofstetterTB,vonGuntenU,WehrliB:

GlobalWaterPollutionandHumanHealth.AnnuRevEnviron Resour2010,35:109-136.

7. WadaY,WisserD,BierkensMFP:Globalmodelingof withdrawal,allocationandconsumptiveuseofsurfacewater andgroundwaterresources.EarthSystDyn2014,5:15-40.

8. WadaY,deGraafIEM,vanBeekLPH:High-resolutionmodeling ofhumanandclimateimpactsonglobalwaterresources.J AdvModelEarthSyst2016,8:735-763.

9. vanVlietMTH,Flo¨rkeM,WadaY:Qualitymattersforwater scarcity.NatGeosci2017,10:800-802.

10. StrokalM,SpanierJ,KroezeC,KoelmansA,Flo¨rkeM, FranssenW,HofstraN,LanganS,TangT,VanVlietMetal.:Global multi-pollutantmodellingofwaterquality:scientific challengesandfuturedirections.CurrOpinEnvironSustain 2018.Submitted.

11. vanVlietMTH,Flo¨rkeM,HarrisonJA,HofstraN,KellerV,LudwigF, SpanierJE,StrokalM,WadaY,WenYetal.:Modelinter- comparisondesignforlarge-scalewaterqualitymodels.Curr OpinEnvironSustain2018.Submitted.

12. SrivastavaP,MigliaccioK,SimunekJ:Landscapemodelsfor simulatingwaterqualityatpoint,field,andwatershedscales.

TransASABE2007,50:1683-1693.

13. BorahD,BeraM:Watershed-scalehydrologicandnonpoint- sourcepollutionmodels:Reviewofmathematicalbases.Trans ASAE2003,46:1553-1566.

14. WellenC,Kamran-DisfaniA-R,ArhonditsisGB:Evaluationofthe CurrentStateofDistributedWatershedNutrientWaterQuality Modeling.EnvironSciTechnol2015,49:3278-3290.

15. LewisDR,McGechanMB:AReviewofFieldScalePhosphorus DynamicsModels.BiosystEng2002,82:359-380.

16. SharmaD,KansalA:Assessmentofriverqualitymodels:A review.RevEnvironSciBiotechnol2013,12:285-311.

17. WangQ,LiS,JiaP,QiC,DingF:Areviewofsurfacewater qualitymodels.SciWorldJ2013http://dx.doi.org/10.1155/2013/

231768.

18. KroezeC,GabbertS,HofstraN,KoelmansAA,LiA,Lo¨hrA, LudwigF,StrokalM,VerburgC,VermeulenLetal.:Global modellingofsurfacewaterquality:amulti-pollutantapproach.

CurrOpinEnvironSustain2016,23:35-45.

OverviewoftheexisingglobalandcontinentalWQmodelsfordifferent waterqualityparameters.

19. BaratR,SerraltaJ,RuanoMV,Jime´nezE,RibesJ,SecoA, FerrerJ:BiologicalNutrientRemovalModelNo.2(BNRM2):a generalmodelforwastewatertreatmentplants.WaterSci Technol2013,67:1481-1489.

20. GassmanP,WilliamsJ,WangX,SalehA,OseiE,HauckLM, IzaurraldeRC,FlowersJD:TheAgriculturalPolicy

EnvironmentalExtender(APEX)model:Anemergingtoolfor landscapeandwatershedenvironmentalanalyses.Trans ASABE2010,53:711-740.

21. AbrahamsenP,HansenS:Daisy:anopensoil-crop-atmosphere systemmodel.EnvironModelSoftw2000,15:313-330.

22. LimousinG,GaudetJ-P,CharletL,SzenknectS,Barthe`sV, KrimissaM:Sorptionisotherms:Areviewonphysicalbases, modelingandmeasurement.ApplGeochemistry2007,22:249- 275.

23. Lindstro¨mG,PersC,RosbergJ,Stro¨mqvistJ,ArheimerB:

DevelopmentandtestingoftheHYPE(Hydrological PredictionsfortheEnvironment)waterqualitymodelfor differentspatialscales.HydrolRes2010,41:295-319.

24. ArnoldJG,SrinivasanR,MuttiahRS,WilliamsJR:Largearea hydrologicmodelingandassessmentPartI:model development.JAmWaterResourAssoc1998,34:73-89.

25. USEPA:Exampleofaflexiblemodelingframeworkcoupling differentlandscapeandinstreamwaterqualitymodels, environmentaldataandanalysistoolsthatisdesignedfor watermanagement..BASINS4.1(BetterAssessmentScience

CurrentOpinioninEnvironmentalSustainability2018,20:1–10 www.sciencedirect.com

Referenzen

ÄHNLICHE DOKUMENTE

Increased federal funding for municipal wastewater treatment; required states to develop water-quality standards; established Federal Water Pollution Control

As illustrated in the worked examples, several of the analytical models are particularly useful for nonpoint source analysis: the Probabilistic Dilution Model

The other goals and components of the study include: a survey of various emissions, the development of wastewater treatment alternatives and upgrading strategies,

Instead of using the transformation (15)-(17) there, it seems better t o apply special techniques exploiting the combinational structure of the problem in the

Oxygen depletion, eutrophication, acidification, toxic pollution, poor hygienic state, salinity, and excess suspended matter are among the issues usually included in the concept

The paper discusses selected decision analytic approaches t o the handling of uncertainty associated to information available, uncertainty as a decision criterion,

Enclosed by this shorter discussion is the main body of the review dealing in turn with(!) identifiability and experimental design, (2) the generation of preliminary

Built into an interactive, modular decision support system's framework, which includes simple database management, interactive video graphics, and linguistic output