• Keine Ergebnisse gefunden

Regioselective Functionalization of Pyridines using a Directed Metalation or a Halogen/Metal Exchange

N/A
N/A
Protected

Academic year: 2022

Aktie "Regioselective Functionalization of Pyridines using a Directed Metalation or a Halogen/Metal Exchange"

Copied!
12
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Regioselective Functionalization of Pyridines using a Directed Metalation or a Halogen/Metal Exchange

Sophia M. Manolikakes, Nadja M. Barl, Christoph S¨amann, and Paul Knochel Department Chemie, Ludwig-Maximilians-Universit¨at M¨unchen, Butenandtstr. 5 – 13, 81377 M¨unchen, Germany

Reprint requests to Prof. Dr. Paul Knochel. Fax: +49-(0)89-2180-77680.

E-mail:Paul.Knochel@cup.uni-muenchen.de

Z. Naturforsch.2013,68b, 411 – 422 / DOI: 10.5560/ZNB.2013-3061 Received February 19, 2013

Dedicated to Professor Heinrich N¨oth on the occasion of his 85thbirthday

This review describes the various ways of functionalizing the pyridine scaffold using either directed metalation or halogen/metal exchange. Deprotonation can be accomplished with different lithium amides or alkyllithium reagents at low temperature. Milder conditions and higher functional group tolerance can be achieved by using ate-bases with different metals (Cd, Mg, Zn) or TMP (2,2,6,6- tetramethylpiperidyl) metal reagents (metal=Mg, Zn, Zr). With alkyllithium reagents it is also pos- sible, by carefully adjusting the reaction conditions, to perform bromine/lithium exchange reactions.

Organomagnesium reagents, likeiPrMgX (X=Br, Cl·LiCl), may be used for exchanging more sen- sitive iodinated or brominated pyridines.

Key words:Pyridines, C-H Activation, Halogen/Metal Exchange

Table of Contents

1. Introduction

2. The Directed Metalation of Substituted Pyridines 2.1 The Directed Lithiation of Pyridines

2.2 The Directed Metalation Using TMP ate- and Metal-Bases (Metal=Cd, Mg, Zn, Zr)

3. Regioselective Functionalization of Pyridines via a Halogen/Metal Exchange

4. Summary and Conclusion Introduction

Pyridines are an important class ofN-heterocycles and many polysubstituted pyridines display important biological activity. Thus, pyridine derivatives such as heterotaxin (1) [1] or the more complex dimeric pyri- dine (+)-complanadine A (2) [2] have been the tar- gets of total syntheses (Fig.1). Although transition metal-catalyzed [2+2+2]-cyclotrimerizations have often been used to build up complex pyridines [3–6],

N Et Bu

HO

heterotaxin (1)

N

N HN NH

Me

(+)-complanadine A (2) H

H Me

Fig. 1. Biologically active pyridine derivatives.

methodologies involving main-group metal intermedi- ates have been proven to be especially useful and of general application. Especially the directed metalation plays an important role in the regioselective introduc- tion of substituents on the pyridine scaffold [7–12].

Also, the performance of regioselective bromine- or iodine/magnesium exchange reactions [13–15]

has become an essential tool for practical applica- tions. In this short review, we summarize recent meth- ods allowing the preparation of functionalized pyridyl

© 2013 Verlag der Zeitschrift f¨ur Naturforschung, T¨ubingen·http://znaturforsch.com

(2)

N FG

N FG

Met

N FG Br directed

metalation pathway A

Br/Mg- exchange pathway B

4 3 5

Scheme 1.

organometallics of type 3, obtained either by a di- rected metalation of functionalized pyridines of type 4 (Scheme1, pathway A) or bromine/magnesium exchange starting from bromopyridines of type 5 (Scheme1, pathway B; FG=functional group).

The Directed Metalation of Substituted Pyridines The directed lithiation of pyridines

Substituted pyridines react with a variety of metal- lic bases leading to metalated intermediates. Since theseN-heterocycles are electron-deficient, the result- ing metalated species may add to still non-metalated substrate leading to dimerization or to oligomeric side- products. These side-reactions occur especially with pyridines bearing electron-withdrawing substituents or when ionic bases such as lithium base are used for per- forming the directed metalation [7–12]. Nevertheless, using a proper set of reaction conditions and the ap- propriate lithium base allows to perform a wide range of selective metalations. The nature of the substituents attached to the pyridine scaffold deeply influences the regioselectivity and the rate of the metalation. Thus, whereas the direct lithiation of pyridine with a 1 : 1 mixture of BuLi andtBuOK (Schlosser base) in THF- hexanes at −100C leads to a mixture of regioiso- meric lithiated pyridines [16,17], the metalation of various dichloropyridines 6–9 with LDA (lithium di- isopropylamide) leads regioselectively to various lithi- ated pyridines which can be iodolyzed or carbonylated affording the desired products 10–13 in good yields (Scheme2) [18].

The use of mixed aggregates of nBuLi with aminoalkoxides such as lithium 2-dimethylamino- ethanolate (LiDMAE) [19,20] allows highly regiose- lective lithiations. The use of a chiral lithium alkox- ide allows the performance of a regio- and enantio- selective metalation (Scheme3) [21].

Lithium 2,2,6,6-tetramethylpiperidide (TMPLi) is a powerful base [22–25], and the deprotonation of pyridine carboxylic acids such as 14 proceeds

N Cl

Cl N

Cl

Cl 1) LDA I

THF-hexanes

78 °C, 2 h

78 °C, 2 h

78 °C, 2 h

78 °C, 2 h 2) I2

2) I2

2) I2

2) CO2 N

Cl Cl

N

Cl Cl

I 1) LDA

THF-hexanes

1) LDA

THF-hexanes 1) LDA

THF-hexanes

Cl N Cl Cl N Cl

I

N Cl Cl

N Cl Cl

CO2H 6

7

8

9

10: 81 %

11: 72 %

12: 64 %

13: 88 % Scheme 2.

N Cl

1) nBuLi Li Me N

hexanes, −78 °CO 2 THF, then PhCHO)

−78 °C Cl N Ph

OH

*

63 %; 58 % ee Scheme 3.

smoothly leading to the lithiated intermediate 15 which, after iodolysis, furnishes the expected product 16in 80 % yield (Scheme4) [26].

The use of lithium amides such as LDA can lead to reversible lithiations in the case of electron-rich pyridines such as 3-methoxypyridine 17. The use of a sterically hindered aryllithium like mesityllithium18 on the other hand leads to an irreversible deprotona- tion leading to a regioselective lithiation with the for- mation of the 2-lithiated pyridine19. After treatment

(3)

N CO2H

Br TMPLi (2 equiv.)

THF, −50 °C, 0.5 h N CO2Li Br

Li

N CO2H

Br I

I2

14 15 16: 80 %

Scheme 4.

N Br

N Br

N Br

3 2 2

2 1

2 : 78 %

1) LDA, THF

95 °C 2) ZnCl2

ZnCl I NO2

Pd(PPh3)4(cat.) T HF, reflux

NO2

Scheme 6.

with DMF, the expected aldehyde 20 is obtained in 85 % yield (Scheme5) [27].

Multiple functionalization can be achieved by com- bining the lithiation step with a subsequent transmeta- lation. Thus, the reaction of the 3-bromopyridine (21) with LDA at −95C leads to a regioselective lithia- tion in position 4. After transmetalation with ZnCl2, the corresponding zinc reagent22is obtained. Negishi cross-coupling of 22 with aryl halides such as 4- nitrophenyl iodide produces the 4-arylated pyridine 23in 78 % yield. The remaining bromide in pyridine 23 can be used for the performance of a subsequent Suzuki cross-coupling reaction (Scheme6) [28,29].

The directed metalation using TMP ate- and metal-bases (metal=Cd, Mg, Zn, Zr)

The reactivity of lithium bases can be strongly tuned by forming ate-bases with various met- als [30–32]. Thus, the use of the lithium zincate base TMPZntBu2Li allows to metalate pyridine in position 2 under mild conditions (25C). After iodolysis, 2- iodopyridine is obtained in 76 % yield [33]. The use of the related lithium cadmiate base TMP3CdLi al- lows a smooth metalation of 3-cyanopyridine (24). Af- ter iodolysis, the iodopyridine25is obtained in 61 % yield (Scheme7) [34,35].

Compared to lithium bases, the mild reaction con- ditions used with ate-bases make them a versatile tool in C-H activation. Moreover, in many cases the use of an excess of ate-base can be avoided. Thus, 0.3 equiv- alents of the magnesium-ate base (TMP)Bu3MgLi2

N

MeO MesLi (18)

−23 °C, 3 h

THF N

MeO

Li N

MeO OHC DMF

17 19 20: 85 %

Scheme 5.

is sufficient for the metalation of 4-chloropyridine 26. Remarkably, this metalation can be performed at

−10C. After iodolysis, the 3-iodopyridine27is ob- tained in 73 % yield (Scheme7) [36].

Metal amides using less electropositive metals than lithium are of great interest, since the organometallics produced after metalation bear a much more cova- lent carbon-metal bond allowing a higher tolerance towards more sensitive functional groups. This func- tional group compatibility is essential, since polyfunc- tional pyridines are common building blocks in phar- maceutical and material sciences. Therefore, the use of magnesium amides derived from sterically hindered bases such as 2,2,6,6-tetramethylpiperidine (TMP-H) proves to be of great synthetic utility. Moreover, the addition of one equivalent of lithium chloride leads to a higher solubility of such bases in THF, allow- ing the performance of fast and highly chemoselective

N CN

N CN

24 25: 61 %

1) TMP3CdLi (0.5 equiv.) 25 °C, 2 h

2) I2

2) I2

I

N

Cl 1) Bu3(TMP)MgLi2 (0.3 equiv.) THF, −10 °C, 2 h

N Cl

I

26 27: 73 %

Scheme 7.

(4)

NH

iPrMgCl·LiCl 25 °C, 12 h

>95 %

N Mg THF

Cl Cl

Li THF THF 28: TMPMgCl∙LiCl (ca. 1.2 M in THF)

N Br Br

N Br Br

MgCl N

Br Br

CHO 31: 85 % DMF

29 30

(1.1 equiv.)28

−25 °C, 0.5 h

Scheme 8.

metalations. Thus, TMPMgCl·LiCl (28) is readily pre- pared by treating TMP-H withiPrMgCl·LiCl [13–15]

in THF leading to a ca. 1.2M solution. The X-ray structure of 28 has been determined by Mulvey [37]

and shows clearly the role of the chloride anions for bridging the magnesium and lithium atoms. This base proves to be kinetically highly active and smoothly deprotonates a wide range of pyridines. Thus, 3,5- dibromopyridine (29) reacts with TMPMgCl·LiCl (28, 1.1 equiv.) at −25C within 0.5 h to give the 2- magnesiated pyridine30. After addition of DMF, the corresponding aldehyde 31is obtained in 85 % yield (Scheme8) [38].

Remarkably, the use of TMPMgCl·LiCl (28) allows to reach unusual regioselectivities. Thus, the magnesi- ation of 2,6-dichloropyridine (7) proceeds with 97 : 3 regioselectivity in position 4 and provides the magne- sium reagent32under mild conditions (−15C, 1.5 h).

After transmetalation to copper with CuCN·2LiCl (1.2 equiv.) and addition of N-lithiomorpholine (33), an oxidative coupling can be accomplished by addition of chloranil leading to the aminopyridine 34 in 50 % yield (Scheme9) [39].

The pyridine ring can be further activated towards metalation by adding a strong Lewis acid such as BF3·OEt2. It turns out that the sterically hindered base TMPMgCl·LiCl (28) reacts reversibly with BF3·OEt2 at temperatures below −20C leading to the frus- trated Lewis pair [40] TMPMgCl·BF3. This adduct decomposes only at temperatures above−10C [41].

Through a coordination of the BF3 group at the N- heterocyclic nitrogen the acidity of the pyridyl hydro- gens increases, and the deprotonation of even electron- rich pyridines such as 2-methoxypyridine (35) pro- ceeds readily. Interestingly, the addition of BF3·OEt2

34: 50 %

7 32: 97: 3

N

Cl Cl Cl N Cl

MgCl.LiCl

Cl N Cl

N O

1) CuCl∙2LiCl 2) Morph-Li (33) 3) chloranil 28, 15 °C

1.5 h

Scheme 9.

may also dramatically change the direction of the de- protonation [42]. Thus, in the absence of this Lewis acid, the metalation of 35 with the aluminum base (tBu(R)N)3Al·3LiCl (36; R=tBu(iPr)CH) [42] pro- ceeds in position 3 leading to the ketone37 in 68 % yield after a copper-catalyzed acylation. On the other hand, in the presence of BF3·OEt2 (1.1 equiv.), the coordination of TMPMgCl·LiCl (28) at the oxygen- center of the methoxy group is hampered because of steric and inductive effects (Scheme10).

The TMP-base is therefore metalating position 6 of the pyridine ring which is more readily accessi- ble and clearly the most acidic position. After iodol- ysis, the 6-iodopyridine38 is obtained in 75 % yield (Scheme10). This behavior is general and other sub- stituted pyridines react in a similar way. Thus, when TMPMgCl·LiCl (28) is used without Lewis acid, 2- phenylpyridine (39) is magnesiated at the phenyl ring.

In the presence of BF3·OEt2, however, a smooth met- alation occurs at position 6 of the pyridine ring. After iodolysis, the two regioisomeric iodides40and41are obtained in 83 – 85 % yield. Also, the disubstituted 4- cyanopyridine42is magnesiated with TMPMgCl·LiCl in position 2 providing the 2-allylated pyridine 43 in 65 % yield after copper-catalyzed allylation. In the presence of BF3·OEt2, a complete switch of regio-

(5)

38: 75 % N

COPh OMe

1) (tBu(R)N)3Al·3AlCl (36) 25 °C, 2 h 2) CuCN2LiCl

PhOCl N OMe I N OMe

1) BF3·OEt2, 30 °C

2) TMPMgCl·LiCl (28) 2) TMPMgCl·LiCl (28) 2) TMPMgCl·LiCl (28)

0 °C, 60 h 3) I2

2) I2 3) I2

35 37: 68 %

N I

N Ph

39 41: 83 %

N Ph

I

1) BF3·OEt2, −30 °C 1) BF3·OEt2, −30 °C

0 °C, 30 h 40: 85 %

55 °C, 30 h

N Br CN N

43: 65 %

78 °C, 1 h 2) 5 % CuCN∙2LiCl Br

CN

Br N

Br CN

78 °C, 1 h

Br

42 44: 63 %

2) TMPMgCl·LiCl (28)

2) TMPMgCl·LiCl (28)

3) 5 % CuCN∙2LiCl

Scheme 10.

N

NMe2 1) BF3·O Et2, TH F 2) TMPMg Cl·LiC l (28)

0 °C, 1 h 3) Zn Cl2

4) Pd(0) (ca t.); ArI

N N Me2

6 OMe 4 5

4 : 81 %

N Me N

N N Me

1) BF3·OEt2, TH F 2) TM PMg Cl·LiC l (28)

0 °C , 2.5 h 3) 5 % C uC N·2L iCl

(S)-n ico tin e:47 Br 48: 9 2 %

Scheme 11.

selectivity is observed, and after a copper(I)-catalyzed allylation, the 3,4,5-substituted pyridine44is obtained in 63 % yield (Scheme10). Nitrogen substituents are also well tolerated in such metalation reactions. Thus, 4-dimethylaminopyridine (DMAP,45) is conveniently metalated with the system BF3·OEt2-TMPMgCl·LiCl (28) leading to the 2-arylated pyridine46in 81 % yield after Pd-catalyzed cross-coupling [43]. Similarly, the metalation of (S)-nicotine (47) proceeds selectively in position 6 providing the 3,6-disubstituted pyridine 48 in 92 % yield after a copper-catalyzed allylation (Scheme11).

The reaction of 5-bromo-2-chloropyridine (49) with TMPMgCl·LiCl (28) allows a regioselective magne- siation in position 6. A subsequent addition of to- syl cyanide (TosCN) leads to the cyanopyridine50in 68 % yield. The reaction of50with a second equiva- lent of TMPMgCl·LiCl (28) for 10 min at−78C af- fords an intermediate magnesium derivative which, af- ter quenching with MeSO2SMe, leads to the thioether 51in 81 % yield. The last ring position is best meta- lated by using TMP2Zn·2MgCl2·2LiCl (52) which is best prepared by reacting TMPMgCl·LiCl with ZnCl2 (0.5 equiv.) [44–47]. Thus, with the base52the zin-

(6)

N Br

Cl 40 °C, 3 h

2) TosCN N

Br

Cl

NC −78 °C, 10 min

2) MeSO2SMe N

Br

Cl NC

SMe

TMP2Zn·2MgCl2

·2LiCl (52)

−20 °C, 4 h N

Br NC Cl

SMe Zn

2

N Br

Cl NC

SMe Ph O

49 50: 68 % 51: 81 %

53 54: 61 %

PhCOCl CuCN·2LiCl

1) TMPMgCl·LiCl (28) 1) TMPMgCl·LiCl (28)

Scheme 12.

56: 50 % N

MeO

HO N

H

1) Me Li (1 e quiv.) 2) BF3·O Et2(2.2 eq uiv.)

0 °C , 1 5 min 3) TMPMg Cl·LiC l (28)

0 °C , 4 0 min 4) Pd (0) (ca t.)

I C O2Et

N MeO

HO N

H

CO2Et

55

Scheme 13.

cation of51is achieved within 4 h at−20C leading to the zinc reagent53. Copper(I)-mediated acylation of 53with PhCOCl provides the ketone54in 61 % yield (Scheme12) [43].

The use of BF3·OEt2also allows the functionaliza- tion of complex pyridines or quinolines such as quinine (55). A regioselective metalation occurs at position 3 furnishing the arylated quinine56in 50 % overall yield after a Pd-catalyzed cross-coupling (Scheme13) [43].

Besides TMP-Mg or -Zn bases, the use of TMP4Zr·4MgCl2·6LiCl (57) is especially atom- economical, since 4 zirconations can be per- formed with base 57 affording tetraorganozir- conium derivatives of type 58 [48]. Thus, the reaction of 3-bromopyridine, 4-cyanopyridine and 3-carbethoxypyridine regioselectively provides the tetrapyridylzirconium derivatives 58a–c in 95 % yield. These zirconium derivatives react smoothly with allylic bromides or aryl halides in the presence of the appropriate copper or palladium catalysts (Scheme14) [48].

Metalation of pyridines bearing hydrogens with moderate acidity can be achieved by using magne- sium bis-amides. Whereas TMP2Mg·2LiCl is not sta- ble at room temperature over a longer time [49,50], the mixed bis-amidic magnesium base 59 is per- fectly stable at 25C for several days (>20 days).

The magnesiation of the pyridine60with the magne- sium amide59furnishes, after a Pd(0)-catalyzed cross- coupling, the phenylated pyridine 61 in 68 % yield (Scheme15) [51].

The lateral metalation of picolines and lutidines is of great synthetic interest. A highly regioselective zincation of various lutidines can be achieved under mild conditions using TMPZnCl·LiCl (62) [52–56].

Thus, 2,3-dimethylpyridine (63) is regioselectively deprotonated in THF : NEP (10 : 1); (NEP=N- ethylpyrrolidone) leading to the benzylated pyri- dine 64 after Pd-catalyzed arylation. Also, 3,4- dimethylpyridine (65) provides, after a fast zincation with62and Pd-catalyzed arylation, the 4-benzylated product 66 in 92 % yield (Scheme16). Whereas the

(7)

TMPZr·4MgCl·6LiCl

N CN N CN

4 Zr 58b: 95 %

40 °C, 15 min

57

N

CO2Et

BF3.OEt2 N

CO2Et Zr 4 58c: 95 % N

Br

−10 °C, 45 min N

Br 4Zr 58a: 95 %

4

Scheme 14.

NLi MgCl2

0 °C, 1 h

N Mg·2LiCl

2

2

59: 95 %; c = 0.85 M in THF

N CO2tBu

1) 59 (1.1 equiv.)

−40 °C, 12 h 2) ZnCl2

5 % Pd(dba)2

10 % P(o-furyl)3 PhI

N CO2tBu

Ph

60 61: 68 %

Scheme 15.

direct zincation of 2,4-dimethylpyridine (67) using TMPZnCl·LiCl (62) produces a mixture of regioiso- mers, the addition of BF3·OEt2considerably improves the regioselectivity of the metalation and leads only to the 4-benzylated pyridine 68 in 82 % yield after Pd- catalyzed cross coupling (Scheme16) [56].

Regioselective Functionalization of Pyridinesvia a Halogen/Metal Exchange

The presence of a bromo or an iodo substituent at- tached to the pyridine ring allows the performance of halogen/metal exchange reactions. The use of alkyl- lithium reagents leads to fast exchange reactions. How- ever, the reaction conditions used are of special im- portance, since lithiation of the pyridine ring may

2) TMPZnCl·LiCl (62) 1) TMPZnCl·LiCl (62) 1) TMPZnCl·LiCl (62)

THF:NMP, 25 °C, 15 min

3) 2) 2)

N Me

Me

Br NMe2

2 % Pd(OAc), 4 % SPhos 50 °C, 2 h

2 % Pd(OAc), 4 % SPhos 50 °C, 2 h

2 % Pd(OAc), 4 % SPhos 50 °C, 2 h

N

Me NMe2

63 64: 85 %

THF, 25 °C, 15 min N

Me

Br OMe

N Me

65 66: 92 %

Me

OMe

N Me

Me 1) BF3·OEt2, 0 °C, THF

78 °C, 1 h

Br CO2Et

N Me

CO2Et

67 68: 82 %

Scheme 16.

be a competitive process. Thus, the addition of 1 equivalent oftBuLi to a solution of 3-bromopyridine (21) (THF, −78C, 5 min), followed by the addi- tion of Me3SiCl, furnishes the 4-silylated pyridine 69, indicating a lithiation at position 4. By invert- ing the addition order (i. e. adding a solution of 21 to tBuLi), now the desired Br/Li-exchange occurs

(8)

N

SiMe3

N

Br 1) tBuLi, –78 °C (1 equiv.) 2) TMSCl, –78 °C 1) inverse addition

1) tBuLi, –78 °C 2) TMSCl, –78 °C

5 min (1 equiv.) 1) BuLi, –78 °C

tBuLi, –78 °C (1 equiv.)

2) TMSCl, –78 °C 2) TMSCl, –78 °C

Br/Li-exchange

N Br

ortho-lithiation

70: 92 % 21 69: 70 %

Cl N Cl N

Br

N Cl 0.5 h (1.2 equiv.) Br

72: 90 % 49 71: 92 %

SiMe3

SiMe3

SiMe3

Scheme 17.

within 5 min (at −78C) affording the 3-silylated pyridine 70 in 92 % yield after silylation. Interest- ingly, the nature of the lithium reagent can also change the course of the reaction. Thus, when di- halopyridine 49 is treated with tBuLi, the lithium reagent plays the role of a base rather than an ex- change reagent, leading selectively to the trisubstituted product 71 in 92 % yield after addition of Me3SiCl (Scheme17) [57]. In contrast, nBuLi selectively ex- changes the bromine of 49 furnishing, after addition of Me3SiCl, 2-chloro-5-(trimethylsilyl)pyridine (72) in 90 % yield (Scheme17).

Due to these complications and in order to avoid the use of low temperatures, homoleptic zincates have been used for such exchange reactions. tBu4ZnLi2

has been shown to be highly selective for the perfor- mance of iodine or bromine exchanges [58,59]. Ad- ditionally, the use of tBu4ZnLi2·TMEDA allows to carry out the metalations at room temperature. The use of 0.3 equivalents of the reagent may be sufficient for the exchange. Thus, the treatment of 6-bromo-2- methoxypyridine (73) with tBu4ZnLi2·TMEDA pro- vides the desired 2,6-functionalized products in satis- factory yields after reaction with various electrophiles (Scheme18) [60].

In many cases, the use of magnesium reagents al- lows to achieve iodine/magnesium exchanges in good yields. Thus, the highly functionalized iodopyridine74 undergoes smoothly the exchange at −40C within 0.5 h using iPrMgBr. After a copper-catalyzed acyla- tion with PhCOCl, the desired ketone75is obtained in 84 % yield (Scheme19) [61,62].

Also the iodopyridine 76, bearing a boronic es- ter, undergoes readily a I/Mg-exchange reaction using

N

MeO Br

1) Bu4ZnLi2·TMEDA

toluene, 20 °C, 1 h

2) E+ MeO N E

73 4080 %

(0.3 equiv.)

Scheme 18.

N I

CO2Et Cl

iPrMgBr

−40 °C, 0.5 h N MgBr

CO2Et Cl

CuCN·2LiCl

PhCOCl N

CO2Et Cl O Ph

74 75: 84 %

Scheme 19.

2) 5 % CuCN·2LiCl

76 77: 83 %

N

B I

O O

N B O O 1) iPrMgCl·LiCl

78 °C

Br

Scheme 20.

iPrMgCl·LiCl. Thus, after copper-catalyzed allylation, the allylated boronic ester77is obtained in 83 % yield (Scheme20) [63].

iPrMgCl·LiCl can also be applied to perform Br/Mg-exchange under mild conditions. Thus, the dibromopyridine 78 undergoes a quantitative Br/Mg-exchange using iPrMgCl·LiCl at −30C within 2 h leading to the magnesium reagent 79, which can be trapped with numerous elec- trophiles. For example, its reaction with propi- onaldehyde provides the corresponding alcohol 80

(9)

78 80: 87 % iPrMCl·LiCl

−30 °C, 2 h N OTs

Br Br

N OTs MgCl Br

N OTs

Br Et

OH EtCHO

79

81 83: 75 %

N OTs Br

82 N OTs ClMg

O COCl CuCN·2LiCl

N OTs O

iPrMCl·LiCl

−30 °C, 7 h

Scheme 21.

84: Ar = p-ClC6H4

86: X = Cl: 63 % 87: X = H: 45 % 1)iPrMgCl·LiCl, T HF

−78 °C, 0.5 h

N I

OSO2Ar

85: 67 % I

Me 2) BrF2CCF2Br

−78 °C to 25 °C N I OSO2Ar Br

Me

1)iPrMgCl·LiCl, T HF

−78 °C, 0.5 h 2) RSSO2Ph

−78 °C to 25 °C

N S

OSO2Ar Br

Me

X

87: Ar = p-ClC6H4

89: 85 % iPrMgCl·LiCl, THF

78 °C to 25 °C

N SPh

OSO2Ar

88 Br

Me Me N SPh Me N SPh

O O

Scheme 22.

in 87 % yield. Similarly, the pyridyl bromide 81 is converted at −30C within 7 h to the magne- siated pyridine 82. A copper-catalyzed allylation furnishes the polyfunctional ketone 83 in 75 % yield (Scheme21) [64].

These exchange reactions can also be extended to quinolines and allow their multiple regioselective func- tionalization including a total synthesis of the bio- logically active molecule talnetant in less than six steps starting with a commercially available quinoline derivative [65]. Also, the regioselective I/Mg-exchange of diiodopyridines such as 84 can be realized under mild conditions. Using iPrMgCl·LiCl at −78C fol-

lowed by quenching with (BrF2C)2 gives selectively the bromopyridine 85 in 67 % overall yield. Subse- quent I/Mg-exchange with iPrMgCl·LiCl at −78C provides, after reaction with RSSO2Ph (R=Ph, 4- ClC6H4), the thioethers 86 and 87 in 45 % – 63 % yield. Interestingly, the 4-chlorophenylsulfonate can be used as a leaving group in the absence of any added electrophile. Thus, the treatment of 87 with iPrMgCl·LiCl at −78C and heating of the reaction mixture to 25C for 1 h produces an intermediate pyri- dyne 88 which, after trapping with an excess of fu- ran, produces the bicyclic product 89 in 85 % yield (Scheme22) [66].

(10)

90 92: 8 8 % iPrMg Cl·LiCl, THF

−5 5 °C, 1 h

91>2 7:1 N

Br Br

CF3

N MgX Br

CF3

N Br

CF3 CO2Et

I CO2Et

4 % Pd(PPh3)4 2 5 °C, 1 h

93 N

Br Br

Me3Si

MgBr·L iCl

iPr iPr

iPr

Me2N O

−2 5 °C, 2 h 2 94 N

MgBr Br

Me3Si

95: 6 0 % N Br

Me3Si

CN Zn Cl2

I CO2Et

4 % Pd(PPh3)4 25 °C, 2 h

ZnCl2

>9 9 :1 Scheme 23.

The homogeneous nature of the Br/Mg-exchange allows to tune the reaction by changing various pa- rameters, and impressive regioselectivities can be achieved for the functionalization of various 3,5- dibromopyridines [67]. Thus, the reaction of the di- bromopyridine 90 with iPrMgCl·LiCl at −55C is complete within 1 h leading to the pyridylmagne- sium reagent 91 with a regioselectivity better than 27 : 1. A transmetalation with ZnCl2followed by a Pd- catalyzed cross-coupling with ethyl 4-iodobenzoate produces the bis-arylated pyridine 92 in 88 % yield (Scheme23). This remarkable regioselectivity is a con- sequence of the difference of electronegativity of the substituents at positions 2 and 6 of the pyridine ring. The aryl ring at position 2 leads to an induc- tive effect stabilizing eventually the resulting Grignard reagent formed after the exchange reaction. The op- posite regioselectivity can be reached by having an electron-donating substituent such as a trimethylsi- lyl group at position 2 (pyridine 93). This electron- donating substituent disfavors the resulting Grignard reaction by an α-effect and hampers the Br/Mg- exchange owing to steric hindrance. This steric hin- drance is further increased by using a bulky arylmag- nesium reagent such as mesitylmagnesium bromide.

After 2 h of reaction time at −25C, the exchange is complete and the resulting Grignard reagent 94 is obtained. Transmetalation with ZnCl2 followed by Pd-catalyzed cross-coupling with 4-iodobenzonitrile

produces the pyridine 95 in 60 % isolated yield (Scheme23) [67].

Summary and Conclusion

This review summarizes the organometallic ap- proaches to functionalize the pyridine scaffold by ei- ther directed metalation or by halogen/metal exchange.

In both cases, lithium species play a major role.

Amide bases like LDA or TMPLi as well as organo- lithium reagents such astBuLi or MesLi can be used for selective C-H activation. Interestingly, alkyllithium species either deprotonate the pyridine scaffold or al- low a bromine exchange, depending on the reaction conditions. The use of lithium organometallics, how- ever, requires in most cases low temperatures (−78C) and only a limited number of functionalities can be tol- erated. This drawback can be overcome by switching to less electropositive metals. For directed metalations, ate-bases with metals such as cadmium, magnesium or zinc, as well as TMP metal bases (metal=Mg, Zn, Zr) allow less stringent conditions and a higher functional group tolerance. The TMP derived bases are compat- ible with Lewis acids like BF3·OEt2 at low tempera- ture, allowing to functionalize even electron-rich and complex systems like quinine, (S)-nicotine or DMAP.

For the halogen/metal exchange, the formation of ho- moleptic zincates or organomagnesium reagents, like iPrMgX (X=Br, Cl·LiCl) makes it possible to work

(11)

under mild conditions with high functional group toler- ance, allowing in certain cases to distinguish between two bromine or iodine atoms attached to the pyridine ring.

This review emphasizes the important role of organometallic chemistry in the synthesis and funtion- alization of pyridines, which is of major concerns due to the biological activity of this class of substances.

[1] M. K. Dush, A. L. McIver, M. A. Parr, D. D. Young, J. Fisher, D. R. Newman, P. L. Sannes, M. L. Hauck, A. Deiters, N. Nascone-Yoder, Chem. Biol.2011, 18, 252.

[2] C. Yuan, C. Chang, A. Axelrod, D. Siegel, J. Am.

Chem. Soc.2010,132, 5924.

[3] D. L. J. Broere, E. Ruijter,Synthesis2012,44, 2639.

[4] J. A. Varela, C. Sa´a,Chem. Rev.2003,103, 3789.

[5] G. Hilt, C. Hengst, W. Hess,Eur. J. Org. Chem.2008, 2293.

[6] T. Bunlaksananusorn, P. Knochel,J. Org. Chem.2004, 69, 4595.

[7] A. Turck, N. Pl´e, F. Mongin, G. Qu´eginer,Tetrahedron 2001,57, 4489.

[8] H. Ila, O. Baron, A. J. Wagner, P. Knochel,Chem. Com- mun.2006, 583.

[9] P. C. Gros, Y. Fort,Eur. J. Org. Chem.2009, 4199.

[10] E. Nagaradja, F. Chevallier, T. Roisnel, V. Jovikov, F. Mongin,Tetrahedron2012,68, 3063.

[11] K. Sn´egaroff, T. T. Nguyen, N. Marquise, Y. S. Habuko, P. J. Harford, T. Roisnel, V. E. Matulis, O. A. Ivash- kevich, F. Chevallier, A. E. H. Wheatley, P. C. Gros, F. Mongin,Chem. Eur. J.2011,17, 13284.

[12] T. T. Nguyen, N. Marquise, F. Chevallier, F. Mongin, Chem. Eur. J.2011,17, 10405.

[13] L. Boymond, M. Rottl¨ander, G. Cahiez, P. Knochel, Angew. Chem. Int. Ed.1998,57, 1701.

[14] M. Rottl¨ander, L. Boymond, L. B´erillon, A. Leprˆetre, G. Varchi, S. Avolio, H. Laaziri, G. Qu´eginer, A. Ricci, G. Cahiez, P. Knochel,Chem. Eur. J.2000,6, 767.

[15] A. Krasovsky, P. Knochel,Angew. Chem. Int. Ed.2004, 43, 3333.

[16] J. Verbeek, A. V. E. George, R. L. P. de Jang, L. Brands- ma,J. Chem. Soc., Chem. Commun.1984, 257.

[17] J. Verbeek, L. Brandsma,J. Org. Chem.1984,49, 3857.

[18] E. Marzi, A. Bigi, M. Schlosser, Eur. J. Org. Chem.

2001, 1371.

[19] P. C. Gros, Y. Fort, G. Qu´eginer, P. Cauber`e, Tetrahe- dron Lett.1995,36, 4791.

[20] P. Gros, Y. Fort, P. Cauber`e, J. Chem. Soc., Perkin Trans. 11997, 3071.

[21] H. K. Khartabil, P. C. Gros, Y. Fort, M. F. Ruiz-Lopez, J. Am. Chem. Soc.2010,132, 2410.

[22] R. A. Olofson, C. M. Dougherty, J. Am. Chem. Soc.

1973,95, 582.

[23] E. J. Corey, A. Gross,Tetrahedron Lett.1984,25, 495.

[24] N. Pl´e, A. Turck, P. Martin, S. Barbey, G. Qu´eginer, Tetrahedron Lett.1993,34, 1605.

[25] M. Iwao, T. Kuraishi,Tetrahedron Lett.1983,24, 2649.

[26] J. Lazaar, A.-S. Rebstock, F. Mongin, A. Godard, F. Tr´ecourt, F. Marsais, G. Qu´eginer, Tetrahedron 2002,58, 6723.

[27] D. L. Comins, D. H. La Munyon, Tetrahedron Lett.

1988,29, 773.

[28] G. Karig, J. A. Spencer, T. Gallagher,Org. Lett.2001, 3, 835.

[29] G. W. Gribble, M. G. Saulnier,Tetrahedron Lett.1980, 21, 4137.

[30] R. E. Mulvey,Organometallics2006,25, 1060.

[31] R. E. Mulvey, F. Mongin, M. Uchiyama, Y. Kondo, Angew. Chem. Int. Ed.2007,46, 3802.

[32] R. E. Mulvey,Acc. Chem. Res.2009,42, 743.

[33] Y. Kondo, M. Shilai, M. Uchiyama, T. Sakamoto, J.

Am. Chem. Soc.1999,121, 3539.

[34] G. Bentabed-Ababsa, S. C. S. Ely, S. Hesse, E. Nassar, F. Chevallier, T. T. Nguyen, A. Derdour, F. Mongin,J.

Org. Chem.2010,75, 839.

[35] K. Sn´egaroff, J.-M. L’Helgoual’ch, G. G. Bentabed- Ababsa, T. T. Nguyen, F. Chevallier, M. Yonehara, M. Uchiyama, A. Derdour, F. Mongin, Chem. Eur. J.

2009,15, 10280.

[36] H. Awad, F. Mongin, F. Tr´ecourt, G. Qu´eginer, F. Mar- sais,Tetrahedron Lett.2004,45, 7873.

[37] P. Garcia-Alvarez, D. V. Graham, E. Hevia, A. R. Ken- nedy, J. Klett, R. E. Mulvey, C. T. O’Hara, S. Weather- stone,Angew. Chem. Int. Ed.2008,47, 8079.

[38] A. Krasovskiy, V. Krasovskaya, P. Knochel, Angew.

Chem. Int. Ed.2006,45, 2958.

[39] M. Kienle, S. R. Dubbaka, V. Del Amo, P. Knochel, Synthesis2007, 1272.

[40] D. W. Stefan, G. Erker,Angew. Chem. Int. Ed.2010,49, 46.

[41] M. Jaric, B. A. Haag, A. Unsinn, K. Karaghiosoff, P. Knochel,Angew. Chem. Int. Ed.2010,49, 5451.

[42] S. H. Wunderlich, P. Knochel,Angew. Chem. Int. Ed.

2009,48, 1501.

[43] M. Jaric, B. A. Haag, S. Manolikakes, P. Knochel,Org.

Lett.2011,13, 2306.

[44] S. H. Wunderlich, P. Knochel,Angew. Chem. Int. Ed.

2007,46, 7685.

[45] Z. Dong, G. C. Clososki, S. H. Wunderlich, A. Unsinn, J. Li, P. Knochel,Chem. Eur. J.2009,15, 457.

(12)

[46] S. H. Wunderlich, P. Knochel, Chem. Commun.2008, 6387.

[47] S. H. Wunderlich, P. Knochel, Org. Lett. 2008, 10, 4705.

[48] M. Jeganmohan, P. Knochel, Angew. Chem. Int. Ed.

2010,49, 8520.

[49] G. C. Clososki, C. J. Rohbogner, P. Knochel, Angew.

Chem. Int. Ed.2007,46, 7681.

[50] C. J. Rohbogner, A. J. Wagner, G. C. Clososki, P. Kno- chel,Org. Synth.2009,86, 374.

[51] C. J. Rohbogner, S. H. Wunderlich, G. C. Clososki, P. Knochel,Eur. J. Org. Chem.2009, 1781.

[52] M. Mosrin, P. Knochel,Org. Lett.2009,11, 1837.

[53] M. Mosrin, G. Monzon, T. Bresser, P. Knochel,Chem.

Commun.2009, 5615.

[54] C. J. Rohbogner, S. Wirth, P. Knochel,Org. Lett.2010, 12, 1984.

[55] T. Bresser, M. Mosrin, G. Monzon, P. Knochel,J. Org.

Chem.2010,75, 4686.

[56] S. Duez, A. K. Steib, S. M. Manolikakes, P. Knochel, Angew. Chem. Int. Ed.2011,50, 7686.

[57] P. Pierrat, P. Gros, Y. Fort,Synlett2004, 2319.

[58] M. Uchiyama, T. Furuyama, M. Kobayashi, Y. Mat- sumoto, K. Tanaka,J. Am. Chem. Soc.2006,128, 8404.

[59] T. Furuyama, M. Yonehara, S. Arimoto, M. Kobayashi, Y. Matsumoto, M. Uchiyama,Chem. Eur. J.2008,14, 10348.

[60] N. T. T. Chan, M. Meyer, S. Komagawa, F. Chevallier, Y. Fort, M. Uchiyama, F. Mongin, P. C. Gros, Chem.

Eur. J.2010,16, 12425.

[61] L. B´erillon, A. Leprˆetre, A. Turck, N. Pl´e, G. Qu´eginer, G. Cahiez, P. Knochel,Synlett1998, 1359.

[62] M. Abarbri, J. Thibonnet, L. B´erillon, F. Dehmel, M. Rottl¨ander, P. Knochel, J. Org. Chem. 2000, 65, 4618.

[63] O. Baron, P. Knochel,Angew. Chem. Int. Ed.2005,44, 3133.

[64] H. Ren, P. Knochel,Chem. Commun.2006, 726.

[65] N. Boudet, J. R. Lachs, P. Knochel,Org. Lett.2007,9, 5525.

[66] W. Lin, L. Chen, P. Knochel, Tetrahedron 2007, 63, 2787.

[67] C. S¨amann, B. A. Haag, P. Knochel, Chem. Eur. J.

2012,18, 16145.

Referenzen

ÄHNLICHE DOKUMENTE

Compound 3 reacts af- ter removal of the Boc protection group in a Schiff base condensation with pyridine-2-carbaldehyde in methanol to give ligand 5 containing a bidentate

After a first, unpublished attempt by Sven Sahle to mirror a classical spiral-type attractor using a tube put into the middle, which yielded "messy" equa- tions, a

1.) Milica Jaric, Benjamin A. Manolikakes, Paul Knochel “Selective and Multiple Functionalization of Pyridines and Alkaloids via Mg- and Zn-Organometallic

Keywords Sparse domination · Space of homogeneous type · Muckenhoupt weight · Singular integral operator · Mihlin multiplier theorem · Rademacher maximal operator.. Mathematics

The aqueous phase was extracted three times with EtOAc (3×30 mL) and the combined organic phases were dried over anhydrous Na2SO4 and filtrated.. Stirring was continued for 10 min

After filtration, the solvents were removed in vacuo and the crude product purified via column. chromatography (isohexane:ethyl acetate = 8:2) to give 103c (83 mg, 0.39 mmol, 78%) as

tolerance, stability and reactivity of the corresponding metal organyl species. Williams), Pergamon, Oxford, 2002; b) Handbook of Functionalized Organometallics Vol. Knochel,

Based on previous results on directed metalation, the aim of the first project was the development of a method for the regioselective metalation and functionalization of