• Keine Ergebnisse gefunden

An Efficient Positive Definite Method for the Numerical Solution of the Advection Equation

N/A
N/A
Protected

Academic year: 2022

Aktie "An Efficient Positive Definite Method for the Numerical Solution of the Advection Equation"

Copied!
56
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Working Paper

AN EFFICIENT P o s r r m DEFINITE METHOD FOR THE NUMERICAL SOLUTION OF THE ADVECTION EQUATION

J e r z y B a r t n i c k i

August 1986 W P - 8 6 - 3 5

International Institute for Applied Systems Analysis

A-2361 Laxenburg, Austria

(2)

NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR

AN EFFICIENT POSITIVE DEFIHITE METHOD FOR THE NUMERICAL SOLUTION OF THE ADVECTION EQUATION

J e r z y B a r t n i c k i

August 1986 W P - 8 6 - 3 5

Working Papers are interim r e p o r t s on work of t h e I n t e r n a t i o n a l I n s t i t u t e f o r Applied Systems Analysis a n d h a v e r e c e i v e d only lim- i t e d review. Views o r opinions e x p r e s s e d h e r e i n d o n o t neces- s a r i l y r e p r e s e n t t h o s e of t h e I n s t i t u t e o r of i t s National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 L a x e n b u r g , Austria

(3)

PREFACE

Under a c o l l a b o r a t i v e a g r e e m e n t with t h e I n s t i t u t e f o r Meteorology a n d Water Management, W a r s a w (Poland), J e r z y Bartnicki works with IIASA's Acid Rain P r o j e c t on modeling a t m o s p h e r i c t r a n s p o r t a n d deposition of pol- lutants. This p a p e r r e p o r t s o n a new method f o r solution of t h e advection equation of a n a i r pollution t r a n s p o r t model. This new method t u r n e d o u t t o b e a useful tool in t h e u n c e r t a i n t y analysis of t h e RAINS (Regional Acidifi- cation INformation a n d Simulation) model c a r r i e d o u t in t h e p r o j e c t .

Leen Hordijk

L e a d e r , Acid Rain P r o j e c t

(4)

I would like t o thank Krzysztof Abert from t h e Institute of Meteorology and Water Management in W a r s a w f o r many valuable discussions about t h e method and especially about t h e filtering p r o c e d u r e . I am a l s o v e r y g r a t e f u l f o r all comments and r e m a r k s of my colleagues from IIASA, and in particu- l a r , I wish t o acknowledge t h e contribution of Maximilian Posch who pro- vided me with t h e three-dimensional g r a p h i c s used in t h i s p a p e r . 1 would a l s o like t o e x p r e s s my g r a t i t u d e t o Dr. J e r z y Pruchnicki from t h e Institute f o r Meteorology and Water Management in W a r s a w who supported p a r t of t h e work done in W a r s a w . Finally I would like t o thank Dr. Leen Hordijk who a g r e e d to review t h e e n t i r e manuscript of t h i s p a p e r .

(5)

ABSTRACT

A numerical Positive Definite Pseudo-Spectral (PDPS) method for t h e solution of t h e advection equation is presented. The method consists of t w o p a r t s . F o r e a c h time s t e p f i r s t a solution using a pseudospectral method i s computed. Then t h e solution i s c o r r e c t e d by a filtering p r o c e d u r e which eliminates negative values. The numerical test with t h e r o t a t i o n a l velocity field a n d d i f f e r e n t initial conditions shows t h a t t h e p r e s e n t method h a s t h e a c c u r a c y of t h e pseudospectral o n e without producing negative values. An additional advantage of t h e PDPS method i s t h e elimination of spurious a r t i f i c i a l shortwaves typical for t h e pseudospectral solution.

-

vii

-

(6)

TABLE OF CONTENTS

1. INTRODUCTION 2. NUMERICAL METHOD

2 . 1 Problem Formulation 2.2 Pseudospectral Solution 2 . 3 Filtering Procedure

2.3.1 Method

2.3.2 A One-Dimensional Example 2.4 Stability and Convergence

3 . ADVECTIVE TEST 3 . 1 Basic Equation

3.2 Cone Shape Initial Condition

3 . 3 Rectangular Block Initial Condition 3 . 4 Smooth Initial Condition

3 . 5 Comparison of Different Initial Conditions 4 . CONCLUSIONS

REFERENCES

(7)

AN EFFICIENT POSlTIYE DEFINITE METHOD FOR THE NUMERICAL SOLUTION OF THE ADVECTION EQUATION

Jerzy Bartnicki

1. INTRODUCTION

The p a r t i a l differential advection-diffusion equation i s most frequently used f o r t h e mathematical description of t h e long r a n g e t r a n s p o r t of a i r pollutants. This equation i s a l s o a basic one f o r t h e atmospheric p a r t of t h e IIASA RAINS (Regional Acidification INformation and Simulation) model described by Alcamo et. al. (1985) and Hordijk (1985). The atmospheric module of RAINS consists of t h e source-receptor matrices computed by MSC-W (Meteorological Synthesizing Centre-West) in Oslo, using t h e Long Range T r a n s p o r t (LRT) model developed by Eliassen and Saltbones (1983).

This LRT t r a j e c t o r y model i s used by t h e Co-operative Programme f o r Moni- toring and Evaluation of t h e Long Range Transmission of Air Pollutants in Europe (EMEP) f o r r o u t i n e calculations. In o r d e r t o use t h i s o r any o t h e r LRT model within RAINS, i t i s important t o evaluate t h e uncertainty and

(8)

credibility of t h e r e s u l t s . Among d i f f e r e n t t y p e s of s o u r c e s of uncertainty in LRT models t h e error introduced by t h e numerical method used t o solve t h e advection4iffusion equation c a n b e a n important o n e , especially for models with nonlinear chemical reactions.

The main goal of t h i s p a p e r i s to p r e s e n t a numerical method which c a n b e used for t h e solution of t h e advection4iffusion equation without produc- ing negative values. T h e r e f o r e t h e method could b e applied to nonlinear problems as w e l l with high a c c u r a c y typical f o r t h e pseudospectral a p p r o a c h and without losing stability (which o c c u r s when negative values a p p e a r ) . When solving t h e advection4iffusion equation, t h e diffusive p a r t i s r e l a t i v e l y l e s s important t h a n t h e advective p a r t concerning numerical problems. A l s o from t h e physical point of view, in t h e synoptic scale of motions, t h e diffusion term i s small compared to t h e advective one a n d i s even neglected in some models (e.g. in t h e MSC-W model). T h e r e f o r e only a n application of t h e method t o t h e advection equation i s p r e s e n t e d in t h i s p a p e r , however, i t c a n b e used f o r t h e advection4iffusion equation as w e l l .

2. NUMERICAL METHOD

Among many d i f f e r e n t methods used f o r t h e numerical solution of t h e advection equation, t h e s p e c t r a l (Orszag, 1971a) and pseudospectral (Gottlieb and Orszag, 1977) a p p r o a c h are relatively efficient and a c c u r a t e . The a c c u r a c y of t h e s e methods i s b e t t e r compared with finite d i f f e r e n c e methods (Orszag, 1971b), and a l s o to o t h e r methods (Long and P e p p e r , 1981;

Chock, 1985). Another advantage of t h e s p e c t r a l methods i s t h e simple mathematical formulation which makes them convenient f o r p r a c t i c a l appli- cations, especially when using numerical Fast F o u r i e r Transform (FFT) (Coo-

(9)

ley and Tukey, 1965). S p e c t r a l and pseudospectral methods have been suc- cessfully applied t o t h e a i r pollution t r a n s p o r t models by Christensen and Prahm (1976) and Wangle et al. (1978). Unfortunately, t h e a c c u r a t e pseu- d o s p e c t r a l and s p e c t r a l methods can produce negative values during t h e numerical solution of t h e advection equation. For many p r a c t i c a l problems, like a i r pollutant t r a n s p o r t involving nonlinear chemistry, t h i s phenomenon makes t h e pseudospectral method unstable. T h e r e are o t h e r methods, like t h e flux-corrected t r a n s p o r t (FCT) method (Boris and Book, 1976; Zalesiak, 1979) and a positive definite algorithm developed by Smolarkiewicz (1984) t h a t c a n b e applied in t h i s case. However, t h e s e methods e i t h e r r e q u i r e a long computational time o r are significantly less a c c u r a t e t h a n t h e pseudos- p e c t r a l solution. This p a p e r p r e s e n t s a combined numerical method: The Positive Definite Pseudo-Spectral (PDPS) method, which eliminates com- pletely negative values on one hand, and i s of t h e same o r d e r of a c c u r a c y as a pseudospectral a p p r o a c h , on t h e o t h e r hand.

2.1. Problem Formulation

The multidimensional advection equation t o b e solved h a s t h e following form:

where c

=

c ( z . t ) is t h e concentration (could b e a r b i t r a r i l y s c a l a r ) , assumed t o b e non-negative.

uj

=

uj ( z , t ) i s t h e j-th velocity component

( 2 , t )

=

( z l,... , z N , t ) a r e t h e s p a c e and t i m e coordinates

(10)

The numerical method presented in t h i s p a p e r involves two basic s t e p s at e a c h time s t e p when solving equation ( 1 ) :

( 1 ) The pseudospectral method is applied t o equation (1) at time t a n d a solution which contains a l s o negative values of t h e concentra- tion i s achieved.

( 2 ) The filtering p r o c e d u r e , which removes all negative values of t h e concentration, is used t o g e t t h e solution at time t + A t .

Let c m

=

c ( z .m A t ) b e t h e concentration field with periodic boundary conditions at time m At. W e are looking f o r t h e concentration c m + l

=

c ( z ,( m + l ) A t ) at time ( m + l ) A t in t h e uniform mesh of size M l x M 2 ,

...,

X M N where t h e location of t h e mesh points i s given by:

where

f o r any j

=

1,2

,...,

N.

The pseudospectral method c a n b e r e p r e s e n t e d by a n o p e r a t o r

PI

which, applied t o t h e d i s c r e t e concentration field c m at time m At, p r o d u c e s t h e concentration c-+' at time ( m + l ) A t :

c- + I

=

p l ( p ) (4)

The concentration r ? + l c a n still include negative values. The filtering p r o c e d u r e c a n b e r e p r e s e n t e d by t h e o p e r a t o r

f

which transforms r? t o c m containing non-negative values only:

(11)

Thus, t h e positively defined pseudospectral method c a n b e defined as:

In principle t h e o p e r a t o r c a n r e p r e s e n t a l s o o t h e r methods, not only t h e pseudospectral method. However, because of i t s simplicity and accu- r a c y , t h e pseudospectral approximation i s a r a t h e r efficient one f o r t h e numerical solution of equation (1).

2.2. Pseudospectral Solution

The pseudospectral a p p r o a c h developed by Gazdag (1973) h a s been chosen as t h e o p e r a t o r P.

-

The principle of Gazdag's method i s to approxi- m a t e t h e time derivatives by a t r u n c a t e d Taylor s e r i e s , and t h e n r e p l a c e t h e time derivatives by t h e s p a c e derivative terms, which are computed using t h e s p e c t r a l method. Mathematically t h e method c a n b e described as follows. Assuming t h a t w e know t h e concentration c m at time m A t , t h e con- c e n t r a t i o n c m

+'

at t h e n e x t time s t e p (m +1)At c a n b e approximated by t h e t r u n c a t e d Taylor s e r i e s

Following Gazdag (1973), t h e time derivatives of c c a n b e e x p r e s s e d in terms of t h e s p a c e derivatives of c and uj by making use of equation (1):

(12)

The s u p e r s c r i p t m h a s been omitted in t h e above equations f o r con- venience. Equations (8-10) show how to compute any o r d e r time d e r i v a t i v e of c from t h e lower o r d e r time d e r i v a t i v e s of u j a n d c . The f i r s t o r d e r time d e r i v a t i v e of c c a n b e computed d i r e c t l y from t h e basic advection equation.

I t remains only t o compute s p a c e derivatives of c which i s done with t h e s p e c t r a l method. Denoting t h e set of all g r i d points (Equations 2-3) by R , t h e finite F o u r i e r t r a n s f o r m C of c c a n b e written as

where i

=

cland k i s t h e wave v e c t o r k

=

( k l

,...,

k j

,...,

k N )

whose components assume i n t e g e r values within t h e limits

From C ( k ,t ) t h e p a r t i a l d e r i v a t i v e s of c ( z ,t ) c a n b e computed as

The numerical computation of t h e s p a c e d e r i v a t i v e s d e s c r i b e d by Equa- tions (11-14) c a n b e c a r r i e d o u t sufficiently f a s t by t h e u s e of t h e numerical Fast F o u r i e r Transform

(FFT,

Cooley and Tukey, 1965). According t o Gazdag (1973) i t gives v e r y a c c u r a t e r e s u l t s and t h e r e f o r e h e called i t Accurate S p a c e Derivative (ASD) method.

(13)

2.3. Filtering Procedure

The pseudospectral method d e s c r i b e d in t h e previous p a r a g r a p h pro- vide t h e concentration in t h e g r i d system at time (m +l)At , assuming t h a t t h e concentration at time m At i s known (also t h e velocity and i t s time derivatives). Unfortunately, t h e new concentration field may contain nega- tive values. The p r e s e n c e of negative concentrations i s a common phenomenon f o r d i f f e r e n t numerical methods used f o r t h e solution of t h e advection equation. According to Adam (1985), t h i s i s mainly due t o t h e wrong numerical propagation s p e e d of t h e s h o r t e s t waves in t h e spectrum.

He suggests, t h a t t h e situation c a n b e improved by applying digital f i l t e r s . However, t h e most common l i n e a r f i l t e r s d o not completely remove t h e nega- t i v e values. The main f e a t u r e s of a p e r f e c t filtering p r o c e d u r e are: (1) To remove negative values. (2) To c o n s e r v e t o t a l m a s s . (3) To p r e s e r v e t h e s h a p e of t h e function. (4) To p r e s e r v e t h e maxima. (5) To b e f r e e of shortwave noise. Unfortunately, none of t h e existing numerical f i l t e r s s a t i s f y all above requirements.

2.3.1. Method

The multidimensional nonlinear filtering p r o c e d u r e developed in t h i s p a p e r fulfills at least some of t h e conditions mentioned above. I t completely removes negative values and c o n s e r v e s t h e total mass with an a c c u r a c y of 0.001%. Filtered maxima and t h e s h a p e of t h e function a r e relatively close t o t h e original ones. The p r o c e d u r e c a n b e explained as follows. Let c, b e t h e concentration in t h e j - t h point of t h e one-dimensional g r i d system con- sisting of N points ( j

=

1 , .

..

,N). If all c, values are non-negative t h e f i l t e r does not change them. Let u s assume now t h a t t h e concentration field h a s

N 1

(14)

positive values (cj >O),

N 2

z e r o values (c,

=

0) and

N 3

negative values (cj

<

0). Obviously

A s assumed under Equation (1) we have:

Ml > M 3

where

is t h e "positive" m a s s and

i s t h e "negative" m a s s . With t h e above assumptions t h e filtering p r o c e d u r e i s defined by t h e following algorithm:

1. Compute t h e negative mass

M 3

and check if i t i s g r e a t e r than zero.

If not, stop.

2. Compute t h e number of positive concentrations

N1.

3. Check t h e sign of t h e concentration c j f o r j

=

1 ,

..., N

(a) If c j

>

0, s u b t r a c t t h e negative mass divided by t h e number of positive concentrations: c j := c j

- - M3

N

1

(b) If i t is z e r o , d o nothing.

(c) If i t i s negative, s e t i t t o zero: c j := 0.

(15)

2.3.2.

A

One-Dimensional Example

The f i l t e r i n g p r o c e d u r e lined o u t in t h e p r e v i o u s p a r a g r a p h i s illus- t r a t e d b y a simple one-dimensional example with a g r i d system consisting of 11 points. The initial d i s t r i b u t i o n shown in Figure l a i s t y p i c a l f o r t h e i n t e r m e d i a t e solution of t h e advection equation with "delta" function (con- c e n t r a t i o n s at a l l points e x c e p t o n e are e q u a l to z e r o ) as initial condition.

Two negative values of t h e c o n c e n t r a t i o n are p r e s e n t in t h e distribution: -4 at point number 4 a n d -5 at point number 8. After t h e f i r s t i t e r a t i o n (Figure l b ) only o n e n e g a t i v e value remains: -0.8 at point number 11. The s e c o n d a n d final i t e r a t i o n (Figure I c ) gives a d i s t r i b u t i o n without negative values.

The maximum i s s l i g h t l y lower: 13 instead of 15 b u t t h e s h a p e of t h e final d i s t r i b u t i o n i s q u i t e c l o s e to t h e initial o n e (Figure I d ) . From F i g u r e I d i t c a n b e also s e e n t h a t t h e s h o r t waves p r e s e n t in t h e initial d i s t r i b u t i o n h a v e b e e n removed from t h e final one.

The b a s i c f e a t u r e of t h e algorithm p r e s e n t e d a b o v e i s t h e c o n s e r v a t i o n of mass, which c a n b e e x p r e s s e d as

M I

-

M 3

=

const. (18)

The algorithm i s c o n v e r g e n t a n d s t a b l e (this will b e p r o v e d in t h e n e x t sec- tion), a n d a l s o simple in i t s numerical realization. Numerical e x p e r i m e n t s with d i f f e r e n t initial d i s t r i b u t i o n s i n d i c a t e t h a t t h e typical number of i t e r a - tions n e c e s s a r y to a c h i e v e a non-negative d i s t r i b u t i o n i s not g r e a t e r t h a n t w o . Also t h e additional computer-time s p e n t f o r f i l t e r i n g i s small ( 5 109.) compared to t h e computer-time r e q u i r e d b y t h e p s e u d o s p e c t r a l method.

(16)

INITIAL CONCENTRATION

-6

1 2 3 4 5 6 7

GRID POINT NUMBER

Figure l a . One dimensional t e s t f o r t h e f i l t e r i n g p r o c e d u r e : Initial dis- t r i b u t i o n of t h e c o n c e n t r a t i o n .

(17)

CONCENTRAT ION AFTER FIRST ITERATION

CONCENTRATION 6 4

F i g u r e l b .

5 6 7

GRID POINT NUMBER

One dimensional test f o r the f i l t e r i n g p r o c e d u r e : Distribu- t i o n a f t e r f i r s t i t e r a t i o n .

(18)

CONCENTRAT ION AFTER SECOND ITERATION

CONCENTRATION 6

4

-6

1 2 3 4 5 6 7 8 9 10 1 1

GRID POINT NUMBER

Figure l c . One dimensional test f o r t h e f i l t e r i n g p r o c e d u r e : Distribu- tion a f t e r second and final i t e r a t i o n .

(19)

CONCENTRATION AFTER SECOND ITERATION

CONCENTRATION 6 4

Figure l c .

1 2 3 4 5 6 7 B 9 10 1 1

GRID POINT NUMBER

One dimensional t e s t f o r t h e filtering procedure: Distribu- tion a f t e r s e c o n d and final iteration.

(20)

I NI TI AL AND FINAL CONCENTRAT ION

CONCENTRATION 6 4

-6

1 2 3 4 5 6 7 8 9 10 1 1

GRID POINT NUMBER

4- CONCENTRATION AFTER SECOND ITERATION

I

I

.!

...

,)

+--$- I

Figure I d . One dimensional t e s t f o r t h e filtering p r o c e d u r e : Comparis- o n of initial and final distribution of t h e c o n c e n t r a t i o n .

(21)

2.4. Stability and Convergence

The PDPS method d e s c r i b e d by equation (6) i s a s u p e r p o s i t i o n of t h e

A

o p e r a t o r P

--

t h e p s e u d o s p e c t r a l method

-

a n d

-

t h e f i l t e r i n g pro- c e d u r e . The s t a b i l i t y of t h e p s e u d o s p e c t r a l method i s discussed in d e t a i l by Gazdag (1973). He p r o v e d t h a t t h e s t a b i l i t y condition i s s a t i s f i e d f o r t r u n - c a t e d T a y l o r s e r i e s of o r d e r 3,4,7 a n d 8.

F o r t h e f i l t e r i n g p r o c e d u r e t h e r e are t h r e e possibilities: ( 1 ) The ini- t i a l value of t h e c o n c e n t r a t i o n i s n e g a t i v e (Zj

<

0 ) a n d becomes z e r o a f t e r f i l t e r i n g (cj

=

0 ) . ( 2 ) The initial c o n c e n t r a t i o n i s e q u a l to z e r o ( z j

=

0 ) a n d r e m a i n s z e r o (cj

=

0 ) . ( 3 ) The initial c o n c e n t r a t i o n i s positive (Ej

>

0 ) a n d

finally r e m a i n s non-negative, b e c a u s e t h e p a r t of t h e n e g a t i v e mass sub- t r a c t e d f r o m i t c a n n o t b e l a r g e r t h a n t h e o r i g i n a l v a l u e (0 S cj

<

Z j ) .

T h e r e f o r e , t h e following condition i s fulfilled by t h e f i l t e r i n g p r o c e d u r e : 0 5 cj 5

I

Ej

1

j

=

1,

...,

N

where

cj

- -

c o n c e n t r a t i o n at point j b e f o r e f i l t e r i n g

cj

-

c o n c e n t r a t i o n at point j a f t e r f i l t e r i n g

A simple implication of r e l a t i o n ( 1 9 ) i s t h a t t h e amplification f a c t o r s are less t h a n one. This means t h a t t h e f i l t e r i n g p r o c e d u r e i s s t a b l e a n d also t h a t t h e PDPS method, as a s u p e r p o s i t i o n of two s t a b l e o p e r a t o r s , s a t i s f i e s t h e s t a b i l i t y condition.

The f i l t e r i n g p r o c e d u r e i s also c o n v e r g e n t . This i s obvious when only non-negative v a l u e s are p r e s e n t in t h e initial d i s t r i b u t i o n . L e t u s assume now a n initial d i s t r i b u t i o n with N 1 positive values, N 2 z e r o v a l u e s a n d N 3 n e g a t i v e v a l u e s of t h e c o n c e n t r a t i o n in t h e initial d i s t r i b u t i o n . Due to

(22)

Equation (16) t h e negative m a s s M 3 is smaller than positive m a s s MI.

According t o t h e filtering p r o c e d u r e all negative values become equal t o z e r o and z e r o values are not changed. From e a c h positive value of t h e con- c e n t r a t i o n t h e negative m a s s a v e r a g e d o v e r t h e number of positive values i s s u b t r a c t e d . If e a c h positive value i s g r e a t e r t h a n t h e a v e r a g e negative mass, t h e filtering p r o c e d u r e i s completed a f t e r t h e f i r s t i t e r a t i o n . If not, t h e r e are positive values lower than t h e a v e r a g e negative mass, and they become equal t o z e r o during t h e second iteration. I t means t h a t a f t e r e a c h i t e r a t i o n t h e number of z e r o s i n c r e a s e s at l e a s t by t h e number of negative values. Assuming t h a t t h e filtering p r o c e d u r e i s not convergent, t h e r e will b e z e r o s only a f t e r l e s s t h a n N -N3 i t e r a t i o n s , which i s impossible because of t h e conservation of m a s s (Eq. 18). Thus t h e filtering p r o c e d u r e is con- vergent.

3. ADVECTIVE TEST

In o r d e r t o c h e c k t h e a c c u r a c y of t h e method d e s c r i b e d in t h e previ- ous p a r a g r a p h , a numerical advective test h a s been performed. A s t a n d a r d a r t i f i c i a l velocity field h a s been used with t h e "frozen" initial s h a p e moving around t h e a x i s of rotation. T h r e e d i f f e r e n t initial conditions have been chosen: cone, r e c t a n g u l a r block and smooth s h a p e . The test w a s performed both f o r t h e Positive Definite Pseudo-Spectral (PDPS) method, and Pseudo- S p e c t r a l (PS) a p p r o a c h (Gazdag, 1973).

3.1. Basic Equation

The equation describing t h e r o t a t i o n of t h e "frozen" initial condition h a s been frequently used f o r testing numerical methods (Orszag, 1971a; Gaz- dag, 1973; Long and P e p p e r , 1981; Christensen and Prahm, 1976). I t h a s t h e

(23)

following form:

where o is angular velocity

and T i s t h e period of rotation. Equation (1) w a s solved numerically on a g r i d consisting of 32 X 32 points. The time s t e p w a s equal

-

which means

400

t h a t one full revolution r e q u i r e d 400 time s t e p s . The analytical and numeri- c a l solutions were compared a f t e r 1 0 rotations. In addition, s e v e r a l param- eters were computed during e a c h r u n . Namely:

(1) Mass conservation (in X )

- M

where c, ( i

,

j ) is t h e initial concentration

(2) Conservation of t h e s q u a r e of t h e m a s s (in I.)

-

SU

(3) Minimum of c ( i , j )

-

/UI?Y

(24)

(4) Maximumof c ( i , j ) - M A X (5) Maximum a b s o l u t e e r r o r

-

MER

MER

=

m a x ( I c ( i , j )

-

c , ( i , j ) l ) i lj

(6) Average a b s o l u t e error

-

AER 1 32 32

AER

=- C C

I c ( i l j >

-

c , ( i , j ) l 3 2 x 3 2

,=,

j = ,

All a b o v e p a r a m e t e r s a r e functions of time and a r e d i f f e r e n t f o r e a c h initial condition. The maximum of e a c h t e s t e d initial condition w a s k e p t c o n s t a n t a n d e q u a l 100.

3.2. Cone Shape Initial Condition

The "cone" s h a p e initial condition (Figure 2 a ) i s a s t a n d a r d o n e a n d was applied as a t e s t c a s e t o almost a l l numerical methods used f o r solving a n advection equation. In t h e g r i d system t h e "cone" s h a p e i s defined as:

In F i g u r e s (2b) a n d (2c) t h e numerical solutions a f t e r t e n r o t a t i o n s a r e shown f o r t h e PDPS a n d P S methods, r e s p e c t i v e l y . The d i f f e r e n c e in s h a p e s i s small a n d both numerical solutions a r e q u i t e c l o s e t o t h e a n a l y t i c a l one.

However, negative values a p p e a r in t h e P S solution.

The m a s s c o n s e r v a t i o n M , defined by Equation (22), i s equal t o 100%

d u r i n g t h e e n t i r e r u n f o r both PDPS a n d P S with a c c u r a c y b e t t e r t h a n 0.001%. The s q u a r e mass c o n s e r v a t i o n S U , defined by Equation (23), i s

(25)

shown in F i g u r e 3. The s q u a r e mass i s well c o n s e r v e d b y t h e P S method (99.7% a f t e r 1 0 r o t a t i o n s ) and slightly worse b y t h e PDPS method (92.6%

a f t e r 1 0 r o t a t i o n s ) . In t h e l a t t e r case t h e s q u a r e mass d e c r e a s e s r a p i d l y d u r i n g t h e f i r s t r o t a t i o n and t h e n s t a y s almost at t h e same level.

The minimum values MJN are shown in F i g u r e 4 f o r b o t h methods. In case of PDPS n e g a t i v e v a l u e s are n o t c r e a t e d and t h e numerical minimum i s equal to t h e a n a l y t i c a l o n e , which i s z e r o . In case of P S n e g a t i v e values are c r e a t e d , r e a c h i n g -1.81 a f t e r t e n r o t a t i o n s .

The a n a l y t i c a l maximum

MAX

i s e q u a l to 1 0 0 a n d i s s l i g h t l y a b o v e t h e numerical o n e s (Figure 5 ) . A f t e r t e n r o t a t i o n s t h e maximum f o r t h e PDPS method i s e q u a l to 91.75 w h e r e a s i t i s 94.02 f o r t h e P S method. F o r b o t h methods t h e maximum d e c r e a s e s mainly d u r i n g t h e f i r s t r o t a t i o n and t h e n s t a y s at t h e same level.

F o r both PDPS a n d P S t h e maximum a b s o l u t e error MER, defined by Equation (24), o c c u r s at t h e t o p of t h e c o n e . I t i s slightly h i g h e r f o r PDPS t h a n f o r P S (Figure 6 ) , a n d i s l e s s t h a n 1 0 a f t e r t e n r o t a t i o n s .

F o r t h e P S method t h e a v e r a g e a b s o l u t e e r r o r AER, defined by Equa- tion (25), i n c r e a s e s r a p i d l y d u r i n g t h e f i r s t r o t a t i o n a n d t h e n , with some fluctuations, r e m a i n s at t h e same l e v e l of 0.14 (Figure 7 ) . In case of t h e PDPS method, AER i n c r e a s e s slowly, r e a c h i n g 0.172 a f t e r t e n r o t a t i o n s .

9.9. Rectangular Block Initial Condition

The ' R e c t a n g u l a r Block" initial condition i s shown in F i g u r e Ba. I t i s defined on t h e g r i d as:

I

1 0 0 if 5 5 i 511 a n d 135 j 5 1 9

c ( i , j )

=

0 o t h e r w i s e i , j

=

1,...,32

(26)

Figure 2 a . S h a p e of t h e c o n e a f t e r 10 r o t a t i o n s : a n a l y t i c a l solution.

(27)

Figure 2b. S h a p e of t h e cone a f t e r 10 rotations: PDPS method.

(28)

Figure 2 c . Shape of the cone a f t e r 10 rotations: PS method.

(29)

CONE - SQUARE OF MASS CONSERVATION

0

0 1 2 3 4 5 6 7 8 9 1 0

ROTATION

Figure 3. S q u a r e of mass conservation, with t h e cone s h a p e a s initial condition.

(30)

CONE - MI NlMLlM

0

.o

-0.2 -0.4 -0.6 -0.8 M/N

-

1

.o

-1.2 -1.4 -1.6 -1.8 -2

.o

0 1 2 3 4 5 6 7 8 9 1 0

ROTATION

F i g u r e 4 . Minimum v a l u e s f o r t h e PDPS a n d PS methods with t h e c o n e s h a p e i n i t i a l condition.

(31)

CONE - MAXIMUM

30 20

.

10

.

0

-

0 1 2 3 4 5 6 7 8 9 1 0

ROTATION

Figure 5 . Maximum v a l u e s f o r t h e PDPS a n d PS methods with t h e c o n e s h a p e initial condition.

(32)

CONE - MAXIMUM ABSOLUTE ERROR

Figure 6. Maximum absolute e r r o r f o r t h e PDPS a n d P S methods with t h e c o n e s h a p e initial condition.

(33)

F i g u r e 7.

CONE - AVERAGE ABSOLUTE ERROR

0 1 2 3 4 5 6 7 8 9 1 0

ROTATION

A v e r a g e a b s o l u t e e r r o r f o r t h e P D P S a n d PS m e t h o d s with t h e c o n e s h a p e i n i t i a l condition.

(34)

The numerical solution a f t e r t e n r o t a t i o n s is shown in Figure 8 b f o r t h e PDPS method, a n d in F i g u r e 8c f o r t h e P S method. The d i f f e r e n c e between t h e a n a l y t i c a l a n d t h e numerical solutions i s g r e a t e r t h a n f o r t h e c o n e s h a p e initial condition discussed e a r l i e r , b u t t h e initial s h a p e i s k e p t q u i t e well. An i m p o r t a n t a d v a n t a g e of t h e PDPS method i s t h e a b s e n c e of s h o r t w a v e noise, p r e s e n t in t h e solution given by t h e P S method.

The s q u a r e mass i s b e t t e r c o n s e r v e d by t h e P S method (95% a f t e r t e n r o t a t i o n s ) t h a n by t h e PDPS method (69.36% a f t e r t e n r o t a t i o n s ) . Again, l i k e in t h e case of t h e c o n e s h a p e , t h e s q u a r e mass d e c r e a s e s mainly d u r i n g t h e f i r s t r o t a t i o n (71.42%) f o r PDPS, and t h e n remains a t t h e same level 70%

(Figure 9).

The minimum f o r t h e PIIPS method equals t o z e r o d u r i n g t h e e n t i r e r u n . F o r P S i t v a r i e s from -9.28 a f t e r t h e t h i r d r o t a t i o n t o -13.07 a f t e r t e n r o t a - tions (Figure 10). The minimum value p r o d u c e d by t h e PS method is h i g h e r (in a b s o l u t e value) in case of t h e r e c t a n g u l a r block initial condition t h a n in case of t h e c o n e s h a p e initial condition.

The maximum f o r t h e PDPS method (Figure 1 1 ) i n c r e a s e s t o 105.6 a f t e r t h e f i r s t r o t a t i o n a n d t h e n continuously d e c r e a s e s t o 101.0 a f t e r t e n r o t a - tions. The maximum f o r t h e P S method (Figure 1 1 ) i s r e l a t i v e l y high, r e a c h e s 120.16 a f t e r t h e f o u r t h r o t a t i o n a n d remains lower a f t e r w a r d s .

The maximum a b s o l u t e e r r o r i s much h i g h e r compared t o t h e c o n e s h a p e initial condition, both f o r PDPS and P S (Figure 1 2 , c f . Figure 6). In case of PDPS t h e maximum a b s o l u t e error i n c r e a s e s r a p i d l y t o 38.91 a f t e r t h e f i r s t r o t a t i o n a n d t h e n slowly g o e s t o 47.08 a f t e r t e n r o t a t i o n s . The maximum a b s o l u t e e r r o r i n c r e a s e s a l s o in case of t h e P S method (Figure 1 2 )

(35)

Figure 8 b . Shape of the rectangular block a f t e r 10 rotations: PDPS method.

(36)

Figure 8 c . Shape of t h e r e c t a n g u l a r block a f t e r 10 rotations: P S method.

(37)

Figure 9.

RECT. BLOCK - SQUARE OF MASS CONSERVATION

0 1 2 3 4 5 6 7 8 9 10

ROTATION

S q u a r e of mass c o n s e r v a t i o n , with t h e r e c t a n g u l a r block in- i t i a l condition.

(38)

t o 38.8 a f t e r s e v e n r o t a t i o n s .

The a v e r a g e a b s o l u t e error (Figure 1 3 ) i s a b o u t 1.5 times s m a l l e r f o r t h e PDPS (0.161-0.181) t h a n f o r t h e PS method (0.232-0.314).

Compared t o t h e c o n e initial condition, t h e r e c t a n g u l a r block initial condition i s a more c r i t i c a l test f o r t h e numerical methods. Differences between numerical a n d a n a l y t i c a l solution are h i g h e r a n d n e g a t i v e numbers are b i g g e r . In t h e P S solution, t h e r e are a l s o s h o r t r a n g e waves p r e s e n t , which did n o t o c c u r b e f o r e . In t h i s case t h e PDPS method p a s s e d t h e test q u i t e well, a n d e s p e c i a l l y , i t p r e s e r v e d t h e numerical maximum c l o s e t o a n a l y t i c a l o n e a n d did n o t p r o d u c e t h e s h o r t w a v e noise, p r e s e n t in PS solu- tion.

3.4. Smooth Initial Condition

C o n t r a r y to t h e two p r e v i o u s cases t h e last numerical test was p e r - formed with t h e following smooth initial condition:

The s h a p e of t h e d i s t r i b u t i o n defined by Equation (28) i s shown in Fig- u r e 1 4 a .

The numerical solution a f t e r t e n r o t a t i o n s i s shown in Figure 1 4 b f o r t h e PDPS method, a n d in F i g u r e 1 4 c f o r t h e PS method. In b o t h cases t h e d i f f e r e n c e s between t h e a n a l y t i c a l a n d t h e numerical solutions are s m a l l . In case of t h e P S method n e g a t i v e values a p p e a r e d a g a i n b u t s h o r t w a v e s c a n n o t b e s e e n o n t h e g r i d . The s h o r t w a v e s are also n o t p r e s e n t in t h e PDPS solution.

(39)

RECT. BLOCK - MINIMUM

-

14

0 1 2 3 4 5 6 7 8 9 1 0

ROTATION

Figure 10. Minimum values f o r t h e PDPS and P S methods with t h e r e c - t a n g u l a r block initial condition.

(40)

RECT. BLOCK - MAXIMUM

112 MAX

108

0 1 2 3 4 5 6 7 8 9 1 0

ROTATION

F i g u r e 11. Maximum v a l u e s for t h e PDPS a n d P S methods with t h e r e c - t a n g u l a r block initial condition.

(41)

RECT. BLOCK - MAXIMUM ABSOLUTE ERROR

Figure 12.

0 1 2 3 4 5 6 7 8 9 1 0

ROTATION

Maximum a b s o l u t e e r r o r f o r t h e PDPS and P S methods with t h e r e c t a n g u l a r block initial condition.

(42)

RECT. BLOCK - AVERAGE ABSOLUTE ERROR

Figure 13. Average absolute e r r o r f o r t h e

PDPS

and PS methods with t h e r e c t a n g u l a r block initial condition.

(43)

Figure 1 4 a . Smooth s h a p e a f t e r t e n r o t a t i o n s : analytical solution.

(44)

Figure 14b. Smooth s h a p e a f t e r ten rotations: PDPS method.

(45)

Figure 1 4 c . Smooth s h a p e a f t e r t e n rotations: P S method.

(46)

The s q u a r e mass, shown in Figure 15, i s well c o n s e r v e d by both t h e PDPS method (98.91% a f t e r t e n r o t a t i o n s ) and t h e PS method (99.76% a f t e r t e n r o t a t i o n s ) . Again, like in both p r e v i o u s c a s e s , t h e s q u a r e mass d e c r e a s e s mainly d u r i n g t h e f i r s t r o t a t i o n s f o r t h e PDPS method.

The minimum i s z e r o f o r t h e PDPS method d u r i n g e n t i r e r u n (Figure 16). F o r P S , i t slowly d e c r e a s e s from -0.19 a f t e r t h e f i r s t r o t a t i o n t o -0.43 a f t e r t e n r o t a t i o n s . However, t h e a b s o l u t e values of t h e minimum are r a t h e r low compared t o t h e c o n e s h a p e a n d r e c t a n g u l a r block initial conditions.

The maximum, shown in Figure 1 6 , i s v e r y c l o s e t o t h e a n a l y t i c a l value 1 0 0 f o r both methods. A f t e r t e n r o t a t i o n s t h e maximum i s e q u a l t o 99.32 f o r t h e PDPS method a n d 99.70 f o r t h e PS method.

The maximum a b s o l u t e e r r o r (Figure 1 7 ) is 0.70 f o r t h e PDPS method a n d 0.69 f o r t h e P S , a f t e r t e n r o t a t i o n s . I t i n c r e a s e s f a s t e r f o r t h e P S method (0.27 a f t e r t h e f i r s t r o t a t i o n ) t h a n f o r PDPS (0.53 a f t e r t h e f i r s t r o t a t o n ) .

The a v e r a g e a b s o l u t e e r r o r is p r a c t i c a l l y t h e same f o r both methods a n d i t slowly i n c r e a s e s from 0.04 a f t e r t h e f i r s t r o t a t i o n t o 0.05 a f t e r t e n r o t a t i o n s .

3.5. C o m p a r i s o n o f D i f f e r e n t Initial C o n d i t i o n s

The r e s u l t s of t h e a d v e c t i v e test depend both on t h e numerical method a p p l i e d t o t h e advection equation a n d on t h e s h a p e of t h e initial condition.

F o r e a c h of t h e t h r e e d i f f e r e n t initial conditions t h e PDPS a n d PS methods c o n s e r v e initial m a s s with a n a c c u r a c y b e t t e r t h a n 0.001%. Also, f o r a l l of them, t h e PDPS method d o e s n o t p r o d u c e n e g a t i v e v a l u e s a n d t h i s i s t h e most important f e a t u r e of t h e method. However, t h e values of t h e o t h e r

(47)

SMOOTH SHAPE - SQUARE OF MASS CONSERVATION

ROTATION

Figure 15. S q u a r e of mass c o n s e r v a t i o n : smooth initial condition.

(48)

SMOOTH SHAPE - MI NlMUM

-0.45

0 1 2 3 4 5 6 7 8 9 1 0

ROTATION

Figure 16. Minimum values f o r t h e PDPS a n d P S methods with t h e smooth initial condition.

(49)

SMOOTH SHAPE - MAXIMUM

0 1 2 3 4 5 6 7 8 9 1 0

ROTATION

Figure 17. Maximum v a l u e s f o r t h e PDPS a n d P S methods with t h e smooth initial condition.

(50)

m e a s u r e s (SM, MlN f o r t h e P S method, MAX, MER and AER), defined in Sec- tion 3.1, depend o n t h e s h a p e of initial condition.

The s q u a r e mass i s b e t t e r c o n s e r v e d (Figure 15) f o r t h e smooth s h a p e t h a n f o r t h e c o n e s h a p e (Figure 3 ) a n d t h e r e c t a n g u l a r block (Figure 9).

A f t e r t e n r o t a t i o n s , only 0.46% of t h e s q u a r e mass i s l o s t in t h e P S solution a n d 1.09% in t h e PDPS solution. F o r t h e r e c t a n g u l a r block t h e s q u a r e mass d e c r e a s e a f t e r t e n r o t a t i o n s is: 4.28% f o r P S a n d 30.64% f o r PDPS. The c o r r e s p o n d i n g numbers f o r t h e c o n e initial conditions are: 0.93% f o r P S a n d 7.33% f o r PDPS.

The minimum v a l u e s g e n e r a t e d by t h e P S method are smaller (Figure 1 6 ) ,

--

in a b s o l u t e units

-

f o r t h e smooth s h a p e (-0.43 a f t e r s e v e n r o t a t i o n s ) t h a n f o r t h e r e c t a n g u l a r block (-13.07 a f t e r t e n r o t a t i o n s ) , a n d f o r t h e c o n e

(-0.181 a f t e r t e n r o t a t i o n s ) .

Similarly, t h e maximum f o r both methods i s closer to t h e a n a l y t i c a l solution in c a s e of t h e smooth s h a p e (99.32 f o r PDPS, 99.70 f o r PS; F i g u r e 1 7 ) t h a n in case of t h e r e c t a n g u l a r block (101.00 f o r PDPS, 114.04 f o r PS), a n d t h e c o n e s h a p e (91.45 f o r PDPS, 94.02 f o r PS).

The maximum a b s o l u t e error a f t e r t e n r o t a t i o n s (Figure 1 8 ) i s a l s o s m a l l e r f o r t h e smooth s h a p e (0.70 f o r PDPS, 0.69 f o r PS) t h a n f o r t h e rec- t a n g u l a r block (47.08 f o r PDPS, 35.08 f o r P S ) a n d t h e c o n e (8.55 f o r PDPS, 5.98 f o r PS).

Finally, t h e a v e r a g e a b s o l u t e error (Figure 1 9 ) i s slightly h i g h e r f o r t h e smooth s h a p e (0.05 f o r PDPS a n d PS, a f t e r t e n r o t a t i o n s ) t h a n f o r t h e c o n e s h a p e (0.172 f o r PDPS, 0.146 f o r PS) a n d t h e r e c t a n g u l a r block (0.181 f o r PDPS, 0.301 f o r PS).

(51)

Figure 18.

SMOOTH SHAPE - MAXIMUM ABSOLUTE ERROR

0 1 2 3 4 5 6 7 8 9 1 0

ROTATION

Maximum a b s o l u t e e r r o r Tor t h e

PDPS

a n d PS methods with t h e smooth initial condition.

(52)

SMOOTH SHAPE - AVERAGE ABSOLUTE ERROR

0 1 2 3 4 5 6 7 8 9 1 0

ROTATION

F i g u r e 19. A v e r a g e a b s o l u t e error f o r t h e PDPS a n d P S methods with t h e smooth i n i t i a l condition.

(53)

Comparing d i f f e r e n t intial conditions, i t seems t h a t t h e r e c t a n g u l a r block s h a p e is t h e most c r i t i c a l test f o r t h e numerical methods. I t i s a l s o confirmed by t h e generation of t h e a r t i f i c i a l shortwave noise, with t h e high amplitude f o r t h e r e c t a n g u l a r block initial condition (Figure 8b-c), smaller f o r t h e cone initial condition (Figure 2b-c) and practically invisible for t h e smooth initial condition (Figure 14b-c).

4. CONCLUSIONS

The PDPS method p r e s e n t e d in t h i s p a p e r is simple and comprehensive both in mathematical formulation and in p r a c t i c a l application. I t does not produce negative values and c o n s e r v e s initial m a s s with 100% a c c u r a c y . The method consists of two basic p a r t s : (1) The pseudospectral solution, and (2) t h e filtering p r o c e d u r e . Compared t o t h e pseudospectral a p p r o a c h t h e additional computer-time f o r t h e PDPS method i s only about 10% higher. The multidimensional filtering p r o c e d u r e is g e n e r a l enough to b e combined with methods o t h e r t h a n PS, and especially with explicit time integration algo- rithms. The PDPS method can a l s o b e applied t o t h e advection-diffusion equation in t h e same way as t o t h e advection equation.

From t h e numerical t e s t s , performed with t h e PDPS and P S methods in t h e rotational velocity field, i t seems t h a t

-

f o r both methods

-

r e s u l t s depend on t h e initial condition. The most commonly used cone s h a p e gives relatively good r e s u l t s concerning a c c u r a c y and shortwave noise. From t h e t h r e e d i f f e r e n t conditions t e s t e d , t h e most c r i t i c a l one i s t h e r e c t a n g u l a r block s h a p e with v e r y s t e e p gradients. In t h i s c a s e , t h e magnitude of t h e negative values g e n e r a t e d by t h e PS method i s l a r g e r (Figure 10) t h a n f o r t h e o t h e r initial conditions (Figures 8c and 14c). Also t h e amplitude of t h e

(54)

s h o r t w a v e s o n t h e e n t i r e g r i d system i s l a r g e r (Figure 8 c ) . Both, negative values a n d s h o r t w a v e s noise ( e x c e p t some small d i s t u r b a n c e s c l o s e t o t h e r e c t a n g u l a r block) a r e n o t p r e s e n t in t h e PDPS solution.

Also t h e a v e r a g e a b s o l u t e e r r o r i s smaller f o r t h e PDPS method, e x c e p t in t h e c o n e c a s e , when i t i s slightly h i g h e r compared t o t h e P S solu- tion.

Summarizing, t h e a c c u r a c y of t h e PDPS method i s v e r y c l o s e t o t h e P S one. The a d v a n t a g e of PDPS i s a complete elimination of n e g a t i v e values from t h e solution and t h e r e f o r e i t s possible application t o non-linear p r o b - lems (e.g. chemical r e a c t i o n s d u r i n g t h e t r a n s p o r t ) . An additional advan- t a g e of PDPS i s t h e a b s e n c e of shortwaves, t y p i c a l f o r t h e P S solution, in case of s t e e p g r a d i e n t s in t h e c o n c e n t r a t i o n field.

(55)

REFERENCES

Adam, Y. 1985. Nonlinear instability in advection-diffusion numerical models. Appl. Math. Modeling 9 , 434-440.

Alcamo, J., L. Hordijk, J. Kamari, P . Kauppi, M. P o s c h and E. Runca. 1985.

I n t e g r a t e d a n a l y s i s of acidification in E u r o p e . J . Env. Management 21, 47-61.

Boris, J.P. a n d D.L. Book. 1976. F l u x - c o r r e c t e d t r a n s p o r t 111. Minimal error FCT algorithms. J . Comp. Phys. 20, 397-431.

Chock, P.P. 1985. A comparison of numerical methods f o r solving t h e a d v e c - tion equation 11. A t m o s . Environ. 1 9 , 571-586.

C h r i s t e n s e n , 0. a n d L.P. P r a h m . 1976. A p s e u d o s p e c t r a l model f o r d i s p e r - sion of a t m o s p h e r i c pollutants. J. Appl. Meteor. 1 5 , 1284-1294.

Cooley, J.W. a n d J.W. Tukey. 1965. An algorithm f o r t h e machine c a l c u l a t i o n of complex F o u r i e r s e r i e s . Math. Comp. 1 9 , 297-301.

Eliassen, A., a n d J. S a l t b o n e s . 1983. Modeling of long r a n g e t r a n s p o r t of sul- f u r o v e r E u r o p e : a two-year model r u n a n d some model e x p e r i m e n t s . Atmos. Environ. 1 7 , 1457-1473.

Gazdag, J. 1973. Numerical c o n v e c t i v e s c h e m e s b a s e d on a c c u r a t e computa- tion of s p a c e d e r i v a t i v e s . J. Comp. Phys. 1 3 , 100-113.

(56)

Gottlieb, D. and S.A. Orszag. 1977. Numerical analysis of s p e c t r a l methods:

Theory and Application Society f o r Industrial and Applied Mathematics.

Philadelphia, Pennsylvania 19103.

Hordijk, L., 1985. A model f o r evaluation of a c i d deposition in Europe. In:

A. Sydow, M. Thoma a n d R. Vichnevetsky (Eds.), Systems Analysis and Simulation 1985, Vol. 11, Akademie-Verlag Berlin, 1985, pp. 30-39.

Long, P.E. and D.W. P e p p e r . 1981. An examination of simple numerical schemes f o r calculating s c a l a r advection. J . Appl. Meteor. 20, 146-156.

Orszag, S.A. 1971a. Numerical simulation of incompressible flows within sim- p l e boundaries. I. Galerkin ( S p e c t r a l ) R e p r e s e n t a t i o n s Study in Appl.

Math. 5 0 , 293-327.

Orszag, S.A. 1971b. Numerical simulation of incompressible flows within sim- ple boundaries: a c c u r a c y . J. Fluid. Mech. 17, 75-112.

Smolarkiewicz, P.K. 1984. A fully multidimensional positive definite advec- tion t r a n s p o r t algorithm with small implicit diffusion. J. Comp. Phys.

5 4 , 325-362.

Wangle, H., B. Van den Bosk and J.H. Seinfeld. 1978. Solution of a t m o s p h e r i c diffusion problems by p s e u d o s p e c t r a l and o r t h o g o n a l collocation methods. Atmos. Environ. 1 2 , 1201-1032.

Zalesiak, S.T. 1979. Fully multidimensional flux c o r r e c t e d t r a n s p o r t algo- r i t h m s f o r fluids. J. Comp. Phys. 31, 335-362.

Referenzen

ÄHNLICHE DOKUMENTE

Smoluchowski equation, coagulation process, stochastic particle method, Monte Carlo estimator, convergence... This paper studies a stochastic particle method for the numerical

In this paper, the homotopy perturbation method is applied to obtain an approximate solution of the time fractional nonlinear shallow water equation.. In HPM, a homotopy with

Key words: Regularized Long Wave Equation; Differential Transformation Method; Nonlinear Partial Differential Equations; Closed-Form Solution.. Mathematics Subject Classification

A hybrid of Fourier transform and Adomian decomposition method (FTADM) is developed for solving the nonlinear non-homogeneous partial differential equations of the Cauchy problem

In this article, two powerful analytical methods called the variational iteration method (VIM) and the variational homotopy perturbation method (VHPM) are introduced to obtain the

In this article, two powerful analytical methods called the variational iteration method (VIM) and the variational homotopy perturbation method (VHPM) are introduced to obtain the

An efficient numerical method is developed for solving nonlinear wave equations by studying the propagation and stability properties of solitary waves (solitons) of the regularized

Z.Naturforsch.65a, 453 – 460 (2010); received June 30, 2009 / revised September 16, 2009 In many fields of the contemporary science and technology, systems with delaying links often