• Keine Ergebnisse gefunden

Field Relations, Petrography and K-Ar Age Determinations on Magmatic Rocks from Neuschwabenland, Antarctica

N/A
N/A
Protected

Academic year: 2022

Aktie "Field Relations, Petrography and K-Ar Age Determinations on Magmatic Rocks from Neuschwabenland, Antarctica"

Copied!
10
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

PO/III/{J/SC!/lIl1g59 1/ /2): 35--/4. /989

Field Relations, Petrography and K-Ar Age Determinations on Magmatic Rocks from

Neuschwabenland, Antarctica

ByMatthias Percrs". Hans JlirgenLippoh "'.Ursula Rittmann" .: ancl Klaus Weber"

Summarv: Thc Protcrozoic \::~:l;:',';;',ra~g,~':','CI;():~n."~::i"':I~h~,'::':I·,;r,ll;a::[ lvine basaluc Lnandc-itic lava flows and scdimcntarv rocks iutruded bv cliotiuc·JllsrBoramussivct Thc suitcs cover.K-Ar dctcrminauon-, cuvc muxinuuna~c~ 1200\-(<1 on rhcm'1~1l1'llic~-ocks.All thcsc suucswcrc dikcs dnted also at 1200 Ma.Locall\'thcProtcroz~)icrockx clcnvaec~ into mvlonitic textute wbich Inthc Jutul Pcnck graben. Such tcctonic suucturc-,\\C;'Cdntcd <11525Ma usiug

vvhitc~ .

anti thc intrucion of rhc Ma represcnt a larcr slage 01'thcGondwana

ZusaIII 1lH.'1ltassu ng:

DIe von diornischcn Sills

(iCS~lC'.~in:,!,:a,(l~)~I{:~'I\",~C;'.~':~i~n~,:,:~;i:tfi':I~~;ii:;~ii,:~,:~:~1nt~I Ih:~'I;':~~:::~~I,::','c;b:asal!

- Sie typische Plaüformgcvtcinsabfolpen.ischell

biSande-.

i

tixchcn Laven

an den Macmauten Alter wurden nuch an macrnauschen

" sind ~ sein. die inmvlonitische

Strukturen münden1,;,11111.Diese tektonischen syntcktonisch "gcsproßler

mit525\Ia datiert werden

Die lind lrn des Penck Grabens und derlindinVcsl1jclla durchIrL.L.,\a"\\,·~c~n:;.)::'::;~:';:,~:::fi~f

streichenden rholeiirischen mit Altern um Maverknüpft. Laven. Gänge und Sills mit Allem um 180 Ma eine spätere Phase der Gondwanaaufspaltung und stehen möglicherweise in engem Zusammenhang mit beginnenden Offnung

des Meeres.

I. INTRODUCTION

'Nestern ancl central Neuschwabenland is siruatcd bctwecntwo significant rift zones. the Jutul Penek graben to the east ancl the Weddell Sea to the wcst (Fig. I). The geology01'this region is01'great importance to the understanding01'the geotectonic setting01'this part01'Aurareuen in eastern Gondwana and the crustal evolution bcfore the break-up01'Gondwana. Furthermore thc developmern01'the Ross Orogeny in the Weclclell Sea sectot is still open[0question. Thc areas srudicd in wcstcrn ancl cenrral Neuschwabenland deal with the eentraI ancl NE AhImannryggen and the Boreas and Robertskollen nunataks as well as the northern nunataks01'Vestfjella (Fig.

1). The geochronological studies were aimcd ar determining the age01'the magmaute complcxes occurring in these areas.

At Ahlmannryggen previous authors dctermincd a Precambrian age for the exposee! magmatites. The effusive rocks outcroppiug in the northeastern Ahlmannryggcn and the intrusivc rocks exposed in the eentral anc!

northwestern yielded ages01'about 1700 Ma, 1000-- I200 Ma. anc1800-900 Ma. respectively (WOLMARANS

& KENT 1982). Whether these episodes werc charactcrizedbythree different magmaue events or reflect one

magmaue episodc 01'1700 Ma overprintedby two thermal events at 1000-1200 Ma and 800-900 Ma is, however. still unknown. An age 01'192 Ma was determined for one Iv1esozoic dike (WOLMARANS&KENT

1982).

\Vorks previously pllblished on the roek sequences in Vestfjella were resl!'icted to the southwestern areas01'this region. Only HJELLE& WLNSNES (1972) have petrographically ancl strlleturally deseribed the magmatite seqllenees01'sOllthern ancl northern Vestfiella. Initial K/Ar whole-rock analyses on sampies from northern Vestfjella yielded an age01'220 Ma für a dolerite sill ancl01'about 400 Ma for a lava flow (KRYLOV in HJELLE

& WINSNES 1972). These ages also provided a basis for the first age classification01'the volcanite seqllence

(CRADDOCK 1972) .

."Or.

\'1auhws

Peters

ami Prof

Dr. Khws Weber.

InsIilllilül

und

D\'llallll~deI

LlII10'1"11'1'c.

U11l\'crsiWIG~:~:~,;~::;n;~~I;j~f;~,~"~~\'~a:;~Feld

3.

0-3400 "'·"Prllf. DJ HansJÜr~ell LlboratoriUI11 Gcoch;·ono!ogie. Ikidclhcrg. Im1 D-69(X}

IJciclclbcrg Ursula Riumann. ~ 5. D-3000 Hanno\'cr 1.

35

(2)

100 200 2550 Atlantic Ocean

lS'

74'

';

.

'. .

' , a

73' ...

Weddell Sea 72'

...

Fig. 1:

Areas ofinvestigation.

A

nrea

of

invesugntion

atA:';',~'~:;I::,; ~;I(:~';II:I~I;d

sarson

mmatuks:GruGrunehogna arca.SIrStraumsnutane.Barea ru Vestfjeltu

Hol'Passat-Boreasnunataks: Roh Robcrtskollen saison1981iS::l).

Abb. 1: Untcrsuchung sgcbictc: A Ahlll.'.'"ml) %gl:n(fel,J","soll Grunehogna.Str Straumsnutanc. B NÖrdliches

Bor Passat-Boreas Nunataks. Roh Rohcrtskollcn Nunaraks. Gru

Other K-Ar whole-rock analyses on samples from dikes ancl lava flows from southwestern Vestfjella yielded ]54-172 Ma ancl200-69S Ma. respectively (FURNES& MITCHELL 1978. FlIRNES et a1. 1982, FURNES et a1. 1987).

2. FJELD RELATIONS AND PETROGRAPHICAL STUDIES

The following mineral abbrevations were used: 01

=

olivine, plag

=

plagioclase, opx

=

orthopyroxene, cpx

=

clinopyroxene, eh]

=

chlorite. hbl

=

hornblende, bio

=

biorite. Ti-bio

=

Titanium-rieh biotite.

Ahlmannrvggc):

The most eonspicuous regional structure in central Neuschwabenlancl is the Jutul Penck graben. which was interpreted as a rift structure by NEETHLING (1970. 1972). On the western margin of this graben, the nunaraks of the northeastern Ahlmannryggen (Straumsnutane region Fig. I) extend over 60 km in a NNE-SSW direction and are composed of Precambrian arnygdaloidal andesitie lava flows in which pillowJavasancl thin layers of quartzitic tuffitc are intercalated (Fig. 2). The total thickness of this sequence is about 860 m (WATTERS 1972).

The thickness ofthe mosrly horizontal individual lava flows varies fromless than one meter up toSSm. In addition to small portions of pseudomorphically replaced 01+opx , the flows contain high amounts of devitrified glass and partially porphyritic plag+cpx+opaque minerals, The lavas have all been alteredbyextensive epidotization, chloritization, and sericitization. Sediment intercalations display typical shallow-watcr structures, such as ripple marks, mudcracks, and cross-bedding.

In the central Ahlmannryggen (Grunehogna area, Fig. I) located 50 km to the south no lava flow occur; the

(3)

Fig. 2: SE wnllof Snökallcn at Straumsnutane. Hight of wall npproximatcly 4001l1.

Abb.2: Sfi-Wand des Snökallcn in Straumsnutanc. Wandhöhe cu. 400 m.

Fig. 3: NE wall of nunatak 1265 <11 Grunehogna. Hcight of wall approximatcly 300 m.

Abb.3:NE Wand von Nunatak 1.285 von Grunchogna. Wandhöhe ca. "WO m.

(4)

mountuin chains hcre are composecl 01'Precumbrinn. horizontal. shallow-water scdiments. inrruded by the Borgmassiver lntrusives (Fig. 3). Theseinirusionsare mostly horizontal dioritic sills up to 200 m thick showing in-situ differentiarion (crystal fractionation of ilmcnitc.plag).Xcnoliths01' sedimeruuryorigin withinthe sills show characteristics consisuuu with the formation01'small amounts01'partialmelt in thecontaci to the magmaric rocks. Quartz grains probably derivedfrom scdimentary rocks arc cxtrcmely corrodecl. The majority01'the sills has been intensively altered. The only preserveclmagmatic mineral phases arc plag (serici iized and albitized)+ cpxwithopx exsolution lamellae+ opaque minerals. The formcrly glass-rieh groundmass has been replacedby white mica+chi +grecn hbl +myrmckitc. Bietire is usually related to ore-minerals. The same petrographic characieristics were detennined in the sill at Passat and Boreas nunataks (Fig. I) in the northwestern Ahlmann- rO'ggen (where only the xill is exposed. but the sedimenrary country rock is eroded),

It is still unclear whether the effusive complcxcs at Straumsnutane. Passat-Boreas sill and thc Borgmassiver Intrusives can be temporally corrclared.

Slighrlyinclincd dikcs(Fig4) with'I coarsc-grained texture crosseut the magmaue ancl scdimcntary country rock. They are charactcrizcdbypartly intensive altcration (mineral contents:01+cpx+plag+Ti- bio±basaltic hbl +opaques). It is striking that these clikcs have gcncrally imposecl a strong contact mctamorphism on the country rock. Some of these dikcs have becn tcctonically cleformecl and, just like rhe Precambrian country rock.

show'I slatO' oleavage. Particularly in these zones alreration has completely oblitcratecl thc original magmatic minerat composition. In zoncs of lesser teerenie defonnation albitization and slight scricitization of plagioclase are the ouly cffects01'alteration. The magmaue mineral composition01'the dikes consists01'plag+cpx+01+ Ti-bio+opaques

±

opx.

Along thc esearpment on the western margin01'the Jutul Penck graben a slaty clcavage. striking parallel to the graben axis with transitions into mylonitic textures was observecl in the lava f10ws at Straumsnutane. Some01' the abovementionecl c1ikes are also included into the mO'lonitizalion. The mO'lonitization is marked bO' the tectonic formation01'chlorite ancl white mica that is stronglO' oriented in the s-planes. Thc vesieles ofthe magmatic rocks have bcen elongated in the s-planes anc! their seconclarO' mineral fillings 01'quartz ancl calcite are partlO' rccrO'stallizecl. The twinning lamellae01'nonrecrO'slallized calcite are partial 10' defonnecl similar to kink bands.

Fig. 4: E wall 01'Grullchogn<l 1l11l1alak. Hciglll 01' wall appw\iJnatcly 350111.

Abb. 4: E- Wand desGnmehognaNUIli1taks. \VandhÖhc ca.~50lll.

(5)

Fig. 5: Nwallof Grunehognanunarak.Hcight ofwallaproximately250 m.

Abb. 5: N-Wand des Grunehogna Nunataks.

Wandhöhe ca.250 m.

Quartz displays undulatory extinction and deformation bands, in addition to initial recrystallization.

The Precambrian sequences and their tectonic structures described above were intruded by a fnrther dolerite dike generation that is, if at all, only slightly altered. Most of these dikes are±vertical (Fig. 2 and 5) and favourably intruded preexisting faults. They show a fine-graincd, partially porphyritic texture. Their mineral composition consists of plag+porphyritic cpx+finegrained cpx +opx +01+opaques±glass. There are no indications of differentiationbycrystal fractionation. Xenoliths whieh show some similarities to basement rocks were observed in several of these dikes. The contact met amorphic xenoliths are rich in quartz, prehnite, epidote, babingtonitc, and calcite. In these fine-grained. partly porphyritic dolerites there are no indications of tee tonic deformation so that these rocks must be younger than the c1eavage and local mylonitization.

Northern vestijella

The nunataks in the northern part of Vcstfjclla (Fig. I) extend over50km in a NNE-SSW direction. Mainly the Plogen and Basen massifs were the object of investigation here, in addition to the nunataks Fossilryggen, Puggelryggen. Salryggen, and Dagvola. The outcropping rocks of this area eonsist of horizontal or slightly Sw-dipping (100at Plogen) vesicle-rich basalt flows (Fig. 6) with intercalations of subordinate picrite, pyrocla- sties. and thin tuffitic, contact-metamorphosed quartzites. Subaerial magmatism can be presumed due to the collective field observations, particularly pahoehoe lavas, the red eolonring of the lava surfaces and the lack of pillow lavas. The thickness of the volcanic sequence is unknown since neither thetopnor the base of the sequence is exposed: yet, thiekness of>lOOO m can be assumed. These effusive stacks are crosscut by numerous dolerite

(6)

Fig. 6: Part of the NE wall01'thc Plagen massif at N Vestfjclla. Hcight01'wall approximately 600111.

Abb. 6: NE-Wand des Plagen Massivs im nördlichen Vcsrfjclla. Wandhöhe ca. 600111.

dikes and sills (Fig. 6), which in co ntrast to the lava flows, have been hardly altered. The lava flows have been coloured green through conspicuous secondary mineralization (prehnite, purnpellyite, epidote. calcite, chlorite and quartz) bound in part to voids and gas vcsiclcs and intensive pseudomorphic replacement ofmagmatie mineral phases as weil as intensive serieitization and saussuritization ofplagioclase whereas dikes anel sills show no other alteration effects except for serpentinization anel saponitization of opx (bastite) anel slight albitization of plagioclase. Except for the elifferenee in alteration intensity lava flows, elikes anel sills have ielentical magmatic mineral composition. They are either aphyric or contain up to5vol% phenocrysts. which either swim as separate erystals in the mesostasis,01'oeeur as glomerophyrie aggregates. The phenocryst phases consist of: (I) epx+plag, (2) cpx+plag

±

01

±

opx, (3) 01+opx. The matrix eonsists of cpx +plag+opaque minerals,

The opaque mineralizations eontain ilmenite+magnetite with ilmenite ex solution lamellae+chalcopyrite+ pyrrhotite with pentlandite exsolution lamellae+seeonelary hematite. Aceoreling to their magmatic mineral association elifferentiation mechanisms were elominateel by crystal fraetionation of01,cpx , opx, plag proelueing basaltic anelesites and picrites, respectively.

In the vieinity of these magmatte sequence Permian seeliment sequenees are exposeel at Fossilryggen whieh have been eleseribeel in detail by HJELLE&WINSNES (1972). These sediments, whieh were also intrudeel by dikes, are locateel at730m alt., whereas the probably posr-Permian lava flows at Plogen anel Basen erop out above iee surface at 300 malt. It can hence be assumeel that theNli-Sw-oriemedvolcanite ehain of Vestfjellas has sunk at least several hundred meters along a similarly orienteel fault zone relative to the Fossilryggen. The elikes ofthis region predominantly strike NE-SW. Hence, there may be a correlation between the intrusion of the dikes anel the abovementioneel faulring. which may represent extension structures. The sporadic elevelopment of slickensieles at the contact between the dikes anel the country rock, the NW block being downfaulred. is noteworthy. It ean thus be assumeel that the abovementioneel faulring outliveel the intrusion of the elikes.

3. GEOCHRONOLOGY

K-Ar methods were useel for age eleterminations. To delimit the effects of alteration to a minimum the freshest

(7)

possible phases of plagioclase, grounelmass, anel eomagmatic Ti-rich biotite were eoncentratecL It was also possible to separate white mica from a local mylonite zone. AI least 33 analyses were earrieel out

Ahlnrannrvggen

Ages of 1109±33 Ma ancl 1183±33 Ma were obtaineel from comagmatic Ti-bio of the coarsergraineel elikes (Table I), The oldest ages eletennineel for plagioclase ancl grounelmass from the lava flows at Staumsnutane and Borgmassiver Intrusives are also close to these values, All younger ages eletermineel on samples of the Borgmas- sivet Intrusives and lavas at Straurnsnutane are interpretcd as ages of overprinting. These younger ages can be attributeel to a recrono-thermal event wh ich was elateel at 522

±

II anel526

±

I J Ma using syntectonieally grown white mica from a loealmylonite zone exposeel at northern Straumsnutane (Table I),

No. Samplc No. Sire Locality Mineral Rock type t±Ja(Mal -':Il;\r:~:\10 lOK((je)

Cllf'/g STP

SK 4 A Snökallen strongly scricitisized plag flow g71±25 225.00 5.2

SK 4 A Snökallen altered groundmass flow 465±16 54.50 2.6

SK 28 A Snökallcn wcakly altered plag. fla\\" 1115±37 54. lXI 0,9

SK 36 ;\ 3 Snökallcn altered grounclmass f10w 460±16 40,60 2.0

SK 36 A 3 Snöknllen strongly scriciusizcd plag. f10\\ 666± 22 124,00 4,0

820/237 A 15 Nunntak wcakly altered plag. flow 1063±36 178.00 3.2

820

820/237 A [5 Nunatak altered groundmass f10\\ 699±24 37.30 1.1

820

GI' 293 A

"

Grunehogna plag. Bnrgmassivet 666±26 11.40 0,7

Intrusivcs

Ra 318 i\ 39 Roberts- biorite (comag.) dike I j{19±33 419.00 7.0

kollen

RO 318 A 39 Robcrts- plag. dikc 751± 19 10AO 0.3

kollcn

GI' 277 A 33 Grunehogna wcakly altered plag. dikc 841±30 14.76 OA

GI' 277 A 33 Grunchogna groundmass dikc 1143±39 31.57 0.5

Gr 277 i\ 33 Grunehogna biorite(coniag.) dikc 1183±33 398.()0 6.9

Ut 245 A 18 Utkikken muscovitc fraction<2 tun mylonirc zone 526± 11 97.90 4.6

Ut 245 A 18 Utkikken muscovitc fraction2-6um mylonitc zonc 522± 11 117.20 4,9

SK 74 A 23 Snökallcn frcsh groundmass olivinc dike 281± 18 5.01 OA

SN 107 A Snökjcringa Iresh groundmass dike 246±20 2.46 0.2

GI' 293 i\ 31 Grunchogna groundrnass olivine dikc 201 ± 18 2.47 0.3

Tab. 1: K-Ar mineral ages of magmaue rocks and rhcir mylcnitic alteration products at Ahlmannryggen.

Tab. 1: K/Ar-Mineralalter an magmatischen Gesteinen und deren Alterationsprodukten aus dem Ahlmannryggen

The fine-graineel, partly porphyriticdikcs atAhlmannryggen were elateel at 202±18Ma,246±20Ma,anel 281

±

18 Ma (Table I), Vestfjella

Datings on magmatic samples from northern Vestfjella (plagioclase, grounelmass, Table 2) yielded agcs of 150-J 90 Ma withaelistinctmaxirnumat about J80 Maforflows as weil as dikes anel sills. Only two oleler values (>200 Ma) founel for one elike and one flow can have been caused by excess argon. One value of ab out 90 1\1a eletermineel for a lava flow of the Basen massif was obtaineel twice by a double Ar eletermination anel is not interpretable inthegeologie context.

4, DISCUSSION AND CONCLUSION

The extensive hydrothermal alteration of the majority of the Proterozoie basalts at Ahlmannryggen may have causeel errors in the interprctation of the former K-Ar age deterrninations. It becomes clear that K-Ar whole roek elatingsareinsufficient in solving ageproblernsofaltered basaltic rocks, K-Arageeleterminations onmagmaue mineral concentrates alihough being problematieally in some cases proviele more useful results, But K-Ar age eleterminations on concentrates of plagioclase and grounelmass must be handled with care (see Table I: sample no. Ro 318 anel Gr 277). In comparison to plagioclase biotite gives much higher ages. In the Proterozoic rocksat Ahlmannryggen biotite ages are interpreteel as crystallisation ages anel all younger ages as ages of overprinting.

(8)

Snmp!c No. No. Sill' Loculity Mineral Rock typetoU'vla)

PI 41 .\ Plogen wholc reck Iloo. 176±111

Pu 31 .,1 PlIggclryggcn who!c rock 110\\ 315± 1[>

PI 4' .\ 14 Plopen plagioclasc 110\\ I R9±10

PI 45 ,I 14 Plogcn groundmass 110\\ 14E±111

PI 91 .\ 16 Plogen plagioclusc 110\\ 179±11

PI 91 il 16 Plogen groundmacc floo, 169±n

Ba 77 il 1q Basen groundmass 110\\ 90± 92'

Pu 33 cl 10 Puagclryggen plagioclasc dike 195±19"

Pu 3.1 .\ 10 Puggclryagcn groundmnss dike 197±111

Fo 195 cl 7 Fosxilrvggcn plagioclasc dike 174±1.1

Fo 195 .\ 7 Fossilryggen groundmass dike 183±10

PI R4 '\ 16 Plogcn plagioclasc dike 160± 16

PI R4 'I 26 Plogcn groundmass dike 171 ±15

Ba 60 cl IE Basen groundmnss dikc IEII ± 11

PI 85 cl 16 Plogcn proundmuss sill 174 ±16

xio" .lOK (9i-)

STP

6.02 0.9

.~.15 0.2

16.60 1.2

5.15 0.9

I 1.80 1.6

2.93 0.4

3.n 0.9

2.84 0.2

8.57 i.:

3.38 0.5

1.01 0.2

2.96 0.5

2.95 0.4

3.55 0.5

1.93 (1.3

Tab.1:K-Ar mincral ...'.. ",.I ... I ....ancleffusive rock-,FrontVesrfjcl!a. I) Thc high valucs arcprobublycnuscdhycxccss argen. thnt can bc derived fromarcosc xcnolirhs in thc vicinity ofthcxe duteddikcs.::n Error probably causcd b) front scdimcnt xcnoliths.

Tab.1:K/Ar-i'vlincralalleranIntrusiv- und Effusivgesteinen von Vcstfjella.

Accoreling to our investigations in the Proterozoic there is no evielence for more than one magmaue event at Ahlmannryggen. This activity probably took place arounel 1200 Ma. It can be assumcd that the elifference in agc berwecn the Proterozoic dikcs. lava flows at Straumsnutane and the Borgmassiver Intrusives mal' be relatively small, The crystallization age 01' the Proterozoic dikes (at about 1200 Ma) represents the minimum age 01'the Javas and intrusive rocks and all the Proterozoic magmatic rocks of this rcgion mal' be assigned to the same geodynamic event. Therefore an age 01'of about 800 Ma for the Proterozoic magmaue and sedimentary rocks at Ahlmannryggen (as believed by former authors) can be ruled out.

The depositional environment 01'the seelimentary sequences in central Ahlmannryggen was largely fluvial with local marine embayments (BREDELL 1973. 1976. 1982. WOLMARANS& KENT 1982: FERREIRA 1986).

The Borgmassiver Intrusives mainly were emplaccd at shallow crustal levels because they show reactions with wet wall rock. The Straumsnutane basalts reflect largely subaerial lava flows. Local intercalations 01'pillow lavas suggest subaquous exrrusions (marine or lacustrine: WATTERS 1969. 1972: KRYNAUW et al. in press). In spite ofthe effects ofthe Ross Orogeny (450---600 Ma) and thc related tectonic deformation structurcs the Proterozoic magmaue cornplexes and the related sediments were only local ly overprinted by subsequent tectonomagmatic activity anci slightly affectccl by metarnorphism, This is typical of a stable crustal region (shicld. craton 01' platform). The platform rocks (granite and high mctamorphic complexes) are exposed at Annandagstoppane situated South-West 01'Ahlmannryggen (2800 to 3200 Ma. HALPERN 1970. ALLSOPP publisheel in WOLMA-

RANS&KENT 1982). It is suggested tImt these basement rocks represent the basis 01'the volcano-sedimentary

complex at Ahlmannryggen.

Thc development 01'the observeelmylonite zones was caused by a tectono-therrnal event elateel at about 525 Ma ancl is believed to represent the Ross Orogeny proven for the first time in this region. This event was also establisheel in Southcrn Ahica named "Pan Ahican" ancl mal' reflect thc closc spatial correlation between the eastern part 01'South Africa anel Neuschwabenianel in the Paleozoic.

At Ahlmannryggen only fresh groundmass concentrates 01'the Mesozoic elikes were geochronologically analyzed.

The extremeil' low K-values inelicate some analytical errors ancl mal' explain the high difference in the obtained K-Ar ages. Nevertheless. paleomagnetic investigations indicate an age 01' about 200---250 Ma (Trias) 1'01' these dikes (PETERS et al. in press).

At Vestfjella nearly identical ages for the fresh dikes anel sills on one hanel the altereel f10ws on the other on plagioclase anel groundmass concentrates mal' indicate that the lava f10ws were overprinted by the intrusion 01' elikes ancl sills and therefore overprinting ag es 1'01' the f10ws were obtaineel. Paleomagnetic resul ts 01'a significantly lower pole latituele 1'01' the tlows in comparrison to the majority 01' the elikes also mal' inelicate age elifferences (PETERS et al. in press). Nearly identical pole positions were founel on Ferrar elolerites 01'Wright and Victoria Valleys (BULL et al. 1962) ancl Kirkpatrick basalts 01'Qucen Alexanelra Range (OSTRANDER 1971). But these

(9)

Furnes.H. 8.:lviitchell,J,G. ( - Norsk PoJarinstitU!1 Skrifter 169:

pole positions definitely do not reflect an older crystallisation age1'01'these basaltic rocks, because KYLEct al, (1981) derermincd an age 01'about 180 Ma by serveral geochronologic tuerhodes (so these poles represent anomalous pole positions). Therefore it is concludedrhat thc lava flows01'Vestfjella (with the ir nearly identical anomalous pole positions)as weil as dikes and si lls have crystallization ages01'about 180 Ma (in the contrary to the results01'PETERS et al, in press),

In comparison to Ahlmannryggen an increase in number01'elikes is observed in thc lava flows 01'northern Vestfjclla. Their total rhickncss in northernvesttjellayields an extension01'more than 4% in a NW-SE elirection (SPAETH ] 987), At Ahlmannryggen much smaller amounts01'extension must be assurned bascd on the lower number01'dike intrusions. This observation can be interpreteel as indication01'increase in crustal extension to the west toward the present continental margin. According to our investigations the Mcsozoic Gonelwana break-up must be interpreteel as a two phases process. At Ahlmannryggen the initial rift phase is elocumenteel by the devclopment01'the Jutul Penck graben and the intrusion01'the Triassie elikes along older lineaments striking parallel to the graben axis (SPAETH & PETERS ]984), The oleler lineaments 01'Ross Orogeny agc were reacrivatcd as extension structures. Probably sornc other graben systerns provenby other authors in the Weeldell Sea arca (HINZ&KRAUSE 1982: HINZ&KRISTOFFERSEN 19871, Kirvanveggen (WOLMARANS&KENT 1982: KRYNAUW er al. in press) ami Heimcfrontfjclla (pers.COI11,IvL DEGUTSCH, F THYSSEN, MÜnster, H, MILLER, Bremerhaven) may belong to this initial phase interpretedas a faileel ritt structure.

The lava flows, dikes and sills at Vestfjella may represent a later stage01'the Gondwana break-up at about ] 80 Ma, that causcd thc opening ofthe WeelelellSca,The secend phasc may also be representeel by the Explora Anelenes Escarpment proven by HINZ& KRISTOFFERSEN(!987),because the elikes at Vestfjella strike parallel to this structure. In the Wcdelell Sea area the Explora Anelenes Escarpmcnt cuts older lincamcnts (HINZ&KRISTOF- FERSEN 19S7) probably belonging to the initial phase ofthe Gonelwana break-up clocumenteclat Ah lmannryggeu.

5,ACKNOWLEDGEMENTS

\Vc wish to thank the Deutsche Forschungsgemeinschaft1'01'financial supporr cluring these studies. \Ve also thank the Alfrecl-Wegener-Institute 1'01'Polar and Marine Research, Bremerhaven. and the Council for Scientific and Industrial Research, RSA,1'01'logistic support requirements1'01'the expeditions during RV "Polarstern" cruises Ant 1/2, 19S2/83 ami Ant 11/4, ] 9S3/S4, Furthennore, we are grateful to De H, Kohnen, team leacler01'the gco]ogical expedition to the "Kraul Mountains", Del Krynauw, team leaeler01'the South African Earth Seience Programme 1983/84, Prof De G, Spaeth ancl D1', B, Watters1'01'discussion ami advice eluring fielel wark,

RcfCl"CllCCS

BrCclcl] ..I.H. (1973): Thc geology of thc Nashornel- ViddaJskolkn arca. \\eslern Drollning l'vlaud Land. - SOlllh Afr..I.An!. Res.3:1..-10.

B r ecle 11 .J.H. (1976): Thc the Viddalen FOllllation. ami associatccl igncolls rocks inlheViddalenarca. western Dronning

\laud Land. Anlarctica !\'L

B-r ecle 11 .1.H. (1982): Thc Precambrian ancl associated intrusivc rocks of lhcAhtm;l11nryggerr,wcsternDrol111im:

\'1aud Land: aHe\\"intcllm:'lation. - In: Gcoscience: 591-597.Uni\'crsily01' Press. j'",1adison.~ B ull.C.& Ir\'ing.E.(19601: Thc pa1comagnctism ofsomc hypabyssal inlrusive rocks from SOllLh VicloriaLand.Anwrclica. -Geophys. J.

R. Astral1. SOl'. 3: 211-224.

BII1 1 C. Il'Vi11 E. & Will is, I. (1962): Funher paleoillagnetic results1'1'0111South VicLori" Land, Antaretica .-- Gcophys,J.R. i\stron, 50c.6:

er acl cl 0ck C (1972): Geologie map01AnLarclica, scale 1:).(}mHlOO. - t\merican Gco-graphical Socicty. Ne\\"''1'01'1\

Fe r r ei r a, E.P. (1986): The 01'the Ahlmannryggen Group, Antarclica, -In: Gcocongress' g6,e:\tended absLracts.

21!i1 bielmial congress01'IheGeol. South Johanncsburg,

Age relationships01'Iv!csozoic basalt lavas anel dykes in Vest(jel1a, Dronning\'iaudLand. Antaretica.

Oslo.

r-u r11es,J-l..NeII III<1n n. E. - R.8.:S und \.0I1 , B_ (1982): Pelrolorv ami !!eochemistrv01'Jurassie basalt dvkes1'1'0111Veslfjella, Dronnim:

ivlaud Lalld, AIltarClica. -- Lithos 15: 295-304. ~- ~ - . ' ~

F11rn es. H .. Vacl. E.. Aus t e r he itl1.H .. 1'v1 i Ich e 11, 1.G. & Gar111a11n.L.B. (1987): Geochemislrv ofhasalt lavn<;from Vestfjella

and adjacent are::lS, Dronning i'vlaud Land. Antarctica ... - Lithos 20: .\:P-356. - .

Hai per n.lVI. (1970):Rubidium-Strontium date01'jx)ssible three billion years for a granite rock frolll Antarctica. - Sciencc 169:977--978.

H iTl7., K.& Kr ilLIse, \V. ( MmldLllld,Antarctica: seismic -scqucllccs. struclurnl elclllenlsanclgcological dcvc!opmenL - (;eol. E 23: 17---41. Hannover

(10)

Hin c , K. & K ris [0f fcrs c n .Y. (1987): Antarctica. rcccnt advanccs in the understanding01'rhc contincntal shclf - Gcol. Jahrb. E 37:

1--54. Hannover.

Hic11c. A. & Wins n c s T. The sedimentary and volcanic sequcncc of Vestfjella. Dronning Maud Land. - In: Adie. R.J.(cd.l:

. Antureue Geology 539--546.0510. Umvcrsitcrsforlaget.

Kryn aII W .J. R.. WatI c rs . B. R .. HIInt er. D. R.& \Vi!so n . A. H. (111 press); A review of thc ficld rclations. petrolcgy. and g'i,C'I~~:~:~~::;\:;;l~:::~~~,Borgl1laSSi\'ctIntrusions in the Grunehogna Provincc. WCSIClll Dronning Maud Land, Antarctica. - Proceedings 01' thc SL Symposium of Antarctic Earth Seiences. Cambridgc.

Ky1C .P.R.. EIli01. D. H.& SIIt ter.J.F (1981): Jurassie Fcrrar Supcrgroup tholeiites Fromthe Transantarene Mountains Antarctica, and their relationship tc thc initial fragmentation 01" Gondwana. - In. Crcsswcll. iVI. M.&Velin. P. (eds.): GondwanaFivc:2K1-2R7. Rctrcrdam.

Ne c t h I i ng. D.C.(1970): South African Earth Seicnee exploration 01" wcstcm Dronning Maud Land. Antarctica. - Ph.D. thcsis.University01' Natal. Pictcrmnrirzburg (unpublished).

Neeth Iin D. Compararivc 01'Proterozoic and Palaco-Mcsozoic tholeiites 01' western Drouning Maud Land. - In:

R.J. Antureue Gcologv und 603-616. Oslo.Univcrxitcrsforlaget.

Ost r a ncler. 1. H. (1971): Pnleomagnetic investigations of the Queen Victoriu Range, Antarctica. - Ant.J.U. S. 6: 183-185.

Pe! e rs lVI.. Em m c r man n .R., Ha ver kamr, B.. K0h n eil, H. & Web c r K. (inpress): K-Ar dating und settrug 01'igncous rocks in westem and centrat Neuschwabenland. Autarctica. - Procccdings of the Sill International Symposium of Earth Seiences. Cambndge.

Spa eth . G. 01'thc suuctural evoluttonand maemaüsmin wcsternNewSchwabenland. - In:Mckenzie.G. D. (ed) : Goudwana Si". and Geophysics. Geophysical Monograph40:295-307.Washington.

S p a c t h . G. & Pet c r s. M. (1984): Geologische Untersuchungen im nördlichen Ahlmarmrückcn. mittleres Neuschwnbenland/Antarktika. - In: Koltncn, H. (cd.): Die Expedition Antarktis 11mit FS Polarstern83/84,Rcports on Polar Research 19: 174-185, Bremerhavcn.

W a t t ers . B. R. (19721: The Straumsnutane Volcanicx, wcstcrn Dronning Maud Land. - South Afr.J.Anr. Res. 2: 23-3l.

Wo I m urnn s. L.G.& K e nt ,L.E.(1982): Gcotcaical invesuzations in Western Dronnma Maud Land.Antarctica-asvnthesis. - South Afr.

.J.Ant. Res ..Stipp!'2: 1-93. ~ ~ ~ .

Referenzen

ÄHNLICHE DOKUMENTE

muscovite, chlorite and quartz (Figure 10) [Oberha¨nsli et al., 1995; Bousquet et al., 2002] the apparent ages recorded in white mica associated with chlorite, which are interpreted

The calculated P–T values are atypical of the rocks of the Tana Belt, i.e., garnet amphibolites of the Kandalaksha Group (Fig. 1, path 2 ) and associated mica schists of the

Nimfe muhabbet kuşları veya Rosellalar için ½ m 2 lik zemin ve 60 cm yüksek- lik; büyük papağanlar için (gri papağanlar ve Amazonlar) 7000cm 2 lik zemin ve 1.2 m yükseklik;..

Compared to alkaline basalts of adjacent West Antarctica (the Jones Mountains) and of Peter I Island, the samples have lower mg-numbers, lower Ni and Cr contents and lower

These main, 460–505 Ma, ages are similar and Kreuzer (1984) profile across central NVL (reproduced to those of Granite Harbour Intrusives at Terra Nova Bay in Fig. 1991) which

The early Miocene ^Ar/'^Ar age determinations from pumice and lava clasts from 61 to 117 mbsf support the early Miocene age indicated by initial studies of diatom

Calibration of AR-HUD is closely related to calibration methods proposed for optical see-through head-mounted dis- play (OST-HMD) because OST-HMD and AR-HUD have similar

Our data suggests young ages for the Cadamosto Seamount, which is in accordance with recorded seismic activity (Grevemeyer et al. 2010), and its position adjacent to the recently