• Keine Ergebnisse gefunden

VL-09: LOOP und WHILE Programme I (Berechenbarkeit und Komplexit¨at, WS 2018) Gerhard Woeginger

N/A
N/A
Protected

Academic year: 2022

Aktie "VL-09: LOOP und WHILE Programme I (Berechenbarkeit und Komplexit¨at, WS 2018) Gerhard Woeginger"

Copied!
74
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

VL-09: LOOP und WHILE Programme I (Berechenbarkeit und Komplexit¨ at, WS 2018)

Gerhard Woeginger

(2)

Organisatorisches

N¨achste Vorlesung:

Freitag, November 30, 16:30–18:00 Uhr, Audimax Webseite:

http://algo.rwth-aachen.de/Lehre/WS1819/BuK.php (−→ Arbeitsheft zur Berechenbarkeit)

(3)

Wiederholung

(4)

Wdh.: Hilberts zehntes Problem

Hilberts zehntes Problem, im Originalwortlaut (1900)

EineDiophantischeGleichung mit irgend welchen Unbekannten und mit ganzen rationalen Zahlencoefficienten sei vorgelegt: man soll ein Verfahren angeben, nach welchem sich mittelst einer endlichen Anzahl von Operationen entscheiden l¨asst, ob die Gleichung in ganzen rationalen Zahlen l¨osbar ist.

Dioph={hpi|pist ein Polynom mit ganzzahligen Koeffizienten und mit (mindestens) einer ganzzahligen Nullstelle}

Satz von Matiyasevich (1970)

Es ist unentscheidbar, ob ein (multivariates) ganzzahliges Polynom eine ganzzahlige Nullstelle besitzt.

Der Beweis basiert auf Vorarbeiten (1950–1970) von Martin Davis, Hilary Putnam und Julia Robinson.

(5)

Wdh.: Berechenbarkeitslandschaft

rekursiv aufz¨ahlbare

Probleme

H

H D

Probleme mit rekursiv aufz¨ahlbarem Komplement H H D Entscheidbare

Probleme

Unentscheidbare Probleme mit unentscheidbarem Komplement MPCP

PCP

Dioph

(6)

Wdh.: Turing-m¨ achtige Rechnermodelle

Definition

Ein Rechnermodell wird alsTuring-m¨achtigbezeichnet,

wenn jede Funktion, die durch eine TM berechnet werden kann, auch durch dieses Rechnermodell berechnet werden kann.

Da die Registermaschine (RAM) die Turingmaschine simulieren kann, ist sie Turing-m¨achtig

Auch die Mini-RAM (eine schw¨achere Variante der RAM mit stark eingeschr¨anktem Befehlssatz) ist Turing-m¨achtig

(7)

Wdh.: Turing-M¨ achtigkeit

Reines HTML (ohne JavaScript; ohne Browser) istnicht Turing-m¨achtig

Tabellenkalkulationen (ohne Schleifen) sind nichtTuring-m¨achtig Der Lambda Calculus von Alonzo Church ist ¨aquivalent zur TM, und daher Turing-m¨achtig

Dieµ-rekursiven Funktionen von Kurt G¨odel sind ¨aquivalent zur TM,

und daher Turing-m¨achtig

Alle g¨angigen h¨oheren Programmiersprachen sind Turing-m¨achtig:

Algol, Pascal, C, FORTRAN, COBOL, Java, Smalltalk, Ada, C++, Python, LISP, Haskell, PROLOG, etc.

(8)

Vorlesung VL-09

LOOP und WHILE Programme I

Die Programmiersprache LOOP Die Programmiersprache WHILE WHILE versus LOOP

WHILE ist Turing-m¨achtig

(9)

Die Programmiersprache LOOP

(10)

Programmiersprache LOOP

Wir betrachten eine einfache Programmiersprache namens LOOP, deren Programme aus den folgenden syntaktischen Komponenten aufgebaut sind:

Variablen: x1 x2 x3 . . . Konstanten: 0 und 1 Symbole: := + ;

Schl¨usselw¨orter: LOOP DO ENDLOOP

(11)

LOOP / Syntax (1)

Die Syntax von LOOP ist induktiv definiert.

Induktive Definition / Induktionsanfang:

Zuweisungen

F¨ur alle Variablenxi undxj und f¨ur jede Konstantec∈ {0,1}

ist die Zuweisung xi := xj+c ein LOOP Programm.

(12)

LOOP / Syntax (2)

Induktive Definition / Induktionsschritte:

Hintereinanderausf¨uhrung

FallsP1und P2 LOOP Programme sind, so ist auch P1; P2

ein LOOP Programm.

LOOP-Konstrukt

FallsP ein LOOP Programm ist, so ist auch LOOPxi DOP ENDLOOP

ein LOOP Programm.

(13)

LOOP / Syntax (2)

Induktive Definition / Induktionsschritte:

Hintereinanderausf¨uhrung

FallsP1und P2 LOOP Programme sind, so ist auch P1; P2

ein LOOP Programm.

LOOP-Konstrukt

FallsP ein LOOP Programm ist, so ist auch

(14)

LOOP / Semantik (1)

Die Eingabe ist in den Variablen x1, . . . ,xm enthalten.

Alle anderen Variablen werden mit0initialisiert.

Das Resultat eines LOOP Programms ist die Zahl, die sich am Ende der Abbarbeitung in der Variablen x0ergibt.

LOOP Programme der Formxi :=xj+c

sind Zuweisungen des Wertesxj+c an die Variablexi. In einem LOOP ProgrammP1;P2

wird zun¨achstP1und danachP2ausgef¨uhrt.

Das ProgrammLOOPxi DOP ENDLOOPhat folgende Bedeutung: P wirdxi-mal hintereinander ausgef¨uhrt.

(Nur der Wert vonxi zu Beginn der Schleife ist relevant. ¨Andert sich der Wert vonxi im Inneren vonP, so hat dies keinen Einfluss auf die Anzahl der Wiederholungen.)

(15)

LOOP / Semantik (1)

Die Eingabe ist in den Variablen x1, . . . ,xm enthalten.

Alle anderen Variablen werden mit0initialisiert.

Das Resultat eines LOOP Programms ist die Zahl, die sich am Ende der Abbarbeitung in der Variablen x0ergibt.

LOOP Programme der Formxi :=xj+c

sind Zuweisungen des Wertesxj+c an die Variablexi.

In einem LOOP ProgrammP1;P2

wird zun¨achstP1und danachP2ausgef¨uhrt.

Das ProgrammLOOPxi DOP ENDLOOPhat folgende Bedeutung: P wirdxi-mal hintereinander ausgef¨uhrt.

(Nur der Wert vonxi zu Beginn der Schleife ist relevant. ¨Andert sich der Wert vonxi im Inneren vonP, so hat dies keinen Einfluss auf die Anzahl der Wiederholungen.)

(16)

LOOP / Semantik (1)

Die Eingabe ist in den Variablen x1, . . . ,xm enthalten.

Alle anderen Variablen werden mit0initialisiert.

Das Resultat eines LOOP Programms ist die Zahl, die sich am Ende der Abbarbeitung in der Variablen x0ergibt.

LOOP Programme der Formxi :=xj+c

sind Zuweisungen des Wertesxj+c an die Variablexi. In einem LOOP ProgrammP1;P2

wird zun¨achstP1und danachP2ausgef¨uhrt.

Das ProgrammLOOPxi DOP ENDLOOPhat folgende Bedeutung: P wirdxi-mal hintereinander ausgef¨uhrt.

(Nur der Wert vonxi zu Beginn der Schleife ist relevant. ¨Andert sich der Wert vonxi im Inneren vonP, so hat dies keinen Einfluss auf die Anzahl der Wiederholungen.)

(17)

LOOP / Semantik (1)

Die Eingabe ist in den Variablen x1, . . . ,xm enthalten.

Alle anderen Variablen werden mit0initialisiert.

Das Resultat eines LOOP Programms ist die Zahl, die sich am Ende der Abbarbeitung in der Variablen x0ergibt.

LOOP Programme der Formxi :=xj+c

sind Zuweisungen des Wertesxj+c an die Variablexi. In einem LOOP ProgrammP1;P2

wird zun¨achstP1und danachP2ausgef¨uhrt.

Das ProgrammLOOPxi DOP ENDLOOPhat folgende Bedeutung:

(18)

LOOP / Semantik (2)

Ein LOOP ProgrammP mitk Variablen

berechnet einek-stellige Funktion der Form[P] : Nk →Nk. IstP die Zuweisungxi :=xj+c,

so ist[P](r1, . . . ,rk) = (r1, . . . ,ri−1,rj+c,ri+1, . . . ,rk).

IstP=P1;P2 eine Hintereinanderausf¨uhrung, so ist[P](r1, . . . ,rk) = [P2]([P1](r1, . . . ,rk)).

IstP=LOOPxi DOQENDLOOPein LOOP-Konstrukt, so gilt[P](r1, . . . ,rk) = [Q]ri(r1, . . . ,rk).

(19)

LOOP: Beispiele und Macros

(20)

LOOP Programme / Beispiele (1)

Das folgende Programm simuliert die Zuweisungxj :=xi. Beispiel A

xj :=xi+0

Es seixzero eine Dummy-Variable, die mit0initialisiert wird und deren Wert nie ver¨andert wird. Das folgende(c+1)-zeilige Programm simuliert die Zuweisungxj:=c eines konstanten Wertesc≥0an eine Variable.

Beispiel B

xj :=xzero; xj :=xj+1;

xj :=xj+1;

... ...

xj :=xj+1;

(21)

LOOP Programme / Beispiele (2)

Beispiel C

x0:=x1;

LOOPx2DOx0:=x0+1 ENDLOOP

Dieses Programm berechnet die Additionx0:=x1+x2

Beispiel D

x0:=0;

LOOPx2 DOx0:=x0+x1 ENDLOOP

Dieses Programm berechnet die Multiplikationx0:=x1·x2

(22)

LOOP Programme / Beispiele (2)

Beispiel C

x0:=x1;

LOOPx2DOx0:=x0+1 ENDLOOP Dieses Programm berechnet die Additionx0:=x1+x2

Beispiel D

x0:=0;

LOOPx2 DOx0:=x0+x1 ENDLOOP

Dieses Programm berechnet die Multiplikationx0:=x1·x2

(23)

LOOP Programme / Beispiele (2)

Beispiel C

x0:=x1;

LOOPx2DOx0:=x0+1 ENDLOOP Dieses Programm berechnet die Additionx0:=x1+x2

Beispiel D

x0:=0;

LOOPx2DOx0:=x0+x1 ENDLOOP

Dieses Programm berechnet die Multiplikationx0:=x1·x2

(24)

LOOP Programme / Beispiele (2)

Beispiel C

x0:=x1;

LOOPx2DOx0:=x0+1 ENDLOOP Dieses Programm berechnet die Additionx0:=x1+x2

Beispiel D

x0:=0;

LOOPx2DOx0:=x0+x1 ENDLOOP

Dieses Programm berechnet die Multiplikationx0:=x1·x2

(25)

LOOP Programme / Beispiele (3)

Ubung¨

Skizzieren Sie LOOP Programme, die die folgenden Operationen berechnen:

Die (modifizierte) Subtraktionx0:=x1−. x2.

F¨urx1<x2 erh¨altx0den Wert 0; andernfalls den Wertx1−x2 Die Division ohne Restx0:=x1DIVx2

Die Modulo-Operationx0:=x1MODx2

(26)

LOOP Programme / Beispiele (4)

Es seienP1undP2 LOOP Programme, in denen die drei Variablenx1,x2undx3 nicht vorkommen.

Beispiel E

x2:=1; x3:=0;

LOOPx1DOx2:=0;x3:=1 ENDLOOP;

LOOPx2DOP1 ENDLOOP;

LOOPx3DOP2 ENDLOOP

Dieses Programm entspricht dem Konstrukt: IFx1=0 THEN P1 ELSEP2ENDIF Ubung¨

Skizzieren Sie ein LOOP Programm,

das“IFx1=c THENP1ELSEP2 ENDIF”simuliert.

(27)

LOOP Programme / Beispiele (4)

Es seienP1undP2 LOOP Programme, in denen die drei Variablenx1,x2undx3 nicht vorkommen.

Beispiel E

x2:=1; x3:=0;

LOOPx1DOx2:=0;x3:=1 ENDLOOP;

LOOPx2DOP1 ENDLOOP;

LOOPx3DOP2 ENDLOOP Dieses Programm entspricht dem Konstrukt:

IFx1=0 THEN P1 ELSEP2ENDIF

Ubung¨

Skizzieren Sie ein LOOP Programm,

das“IFx1=c THENP1ELSEP2 ENDIF”simuliert.

(28)

LOOP Programme / Beispiele (4)

Es seienP1undP2 LOOP Programme, in denen die drei Variablenx1,x2undx3 nicht vorkommen.

Beispiel E

x2:=1; x3:=0;

LOOPx1DOx2:=0;x3:=1 ENDLOOP;

LOOPx2DOP1 ENDLOOP;

LOOPx3DOP2 ENDLOOP Dieses Programm entspricht dem Konstrukt:

IFx1=0 THEN P1 ELSEP2ENDIF Ubung¨

Skizzieren Sie ein LOOP Programm,

das“IFx1=c THENP1ELSEP2 ENDIF”simuliert.

(29)

Die Programmiersprache WHILE

(30)

Programmiersprache WHILE

Die Programme der Programmiersprache WHILE sind aus den folgenden syntaktischen Komponenten aufgebaut:

Variablen: x1 x2 x3 . . . Konstanten: 0 und 1 Symbole: := + ; 6=

Schl¨usselw¨orter: WHILE DO ENDWHILE

(31)

WHILE / Syntax

Die Syntax von WHILE ist induktiv definiert, und stimmt weitgehend mit der Syntax von LOOP ¨uberein.

Zuweisungenxi := xj+c und die Hintereinanderausf¨uhrungP1;P2 sind genau wie in LOOP definiert.

Der Hauptunterschied zu LOOP besteht im Schleifen-Konstrukt.

WHILE-Konstrukt

FallsP ein WHILE Programm ist undxi eine Variable, so ist auch WHILExi6=0 DOP ENDWHILE

(32)

WHILE / Semantik

Die Eingabe ist in den Variablen x1, . . . ,xm enthalten.

Alle anderen Variablen werden mit0initialisiert.

Das Resultat eines WHILE Programms ist die Zahl, die sich am Ende der Abbarbeitung in der Variablenx0 ergibt.

Das ProgrammWHILExi6=0 DOP ENDWHILEhat folgende Bedeutung:

P wird solange ausgef¨uhrt, bisxi den Wert0erreicht.

Ein WHILE ProgrammP mitk Variablen

berechnet einek-stellige Funktion der Form[P] : Nk →Nk. IstP=WHILExi6=0 DOQ ENDWHILE ein WHILE-Konstrukt,

so ist[P](r1, . . . ,rk) = [Q]`(r1, . . . ,rk)f¨ur die kleinste Zahl`, f¨ur die diei-te Komponente von[Q]`(r1, . . . ,rk)gleich0ist. Falls solch ein `nicht existiert, so ist[P](r1, . . . ,rk)undefiniert.

(33)

WHILE / Semantik

Die Eingabe ist in den Variablen x1, . . . ,xm enthalten.

Alle anderen Variablen werden mit0initialisiert.

Das Resultat eines WHILE Programms ist die Zahl, die sich am Ende der Abbarbeitung in der Variablenx0 ergibt.

Das ProgrammWHILExi6=0 DOP ENDWHILEhat folgende Bedeutung:

P wird solange ausgef¨uhrt, bisxi den Wert0erreicht.

Ein WHILE ProgrammP mitk Variablen

berechnet einek-stellige Funktion der Form[P] : Nk →Nk. IstP=WHILEx 6=0 DOQ ENDWHILE ein WHILE-Konstrukt,

(34)

WHILE versus LOOP

(35)

WHILE versus LOOP (1)

Beobachtung Die LOOP-Schleife

LOOPxi DOP ENDLOOP

kann durch die folgende WHILE-Schleife simuliert werden:

y :=xi

WHILEy 6=0 DOy :=y−1; P ENDWHILE

Ergo: Jede LOOP-berechenbare Funktionf:Nk →Nist auch WHILE-berechenbar.

(36)

WHILE versus LOOP (1)

Beobachtung Die LOOP-Schleife

LOOPxi DOP ENDLOOP

kann durch die folgende WHILE-Schleife simuliert werden:

y :=xi

WHILEy 6=0 DOy :=y−1; P ENDWHILE

Ergo: Jede LOOP-berechenbare Funktionf:Nk →Nist auch WHILE-berechenbar.

(37)

WHILE versus LOOP (2a)

Es gibt WHILE Programme, die nicht terminieren:

Beispiel

x1:=1;

WHILEx16=0 DOx1:=x1+1 ENDWHILE

(38)

WHILE versus LOOP (2b)

LOOP Programme terminieren immer:

Satz

Jedes LOOP Programm h¨alt auf jeder m¨oglichen Eingabe nach endlich vielen Schritten an.

Beweis: Durch Induktion ¨uber den Aufbau des Programms. Zuweisungen

Hintereinanderausf¨uhrungP=P1;P2

LOOP-KonstruktP=LOOPxi DOQ ENDLOOP

(39)

WHILE versus LOOP (2b)

LOOP Programme terminieren immer:

Satz

Jedes LOOP Programm h¨alt auf jeder m¨oglichen Eingabe nach endlich vielen Schritten an.

Beweis: Durch Induktion ¨uber den Aufbau des Programms.

Zuweisungen

Hintereinanderausf¨uhrungP =P1;P2

LOOP-KonstruktP=LOOPxi DOQ ENDLOOP

(40)

WHILE versus LOOP (3)

Wir werden zeigen:

Satz (wird heute bewiesen)

Die Programmiersprache WHILE istTuring-m¨achtig.

(In anderen Worten: Jede berechenbare Funktion kann von einem WHILE Programm berechnet werden.)

Satz (wird in der n¨achsten Vorlesung bewiesen)

Die Programmiersprache LOOP istnicht Turing-m¨achtig.

(In anderen Worten: Es existiert eine berechenbare totale Funktion, die von keinem LOOP Programm berechnet werden kann.)

(41)

M¨ achtigkeit von WHILE

(42)

M¨ achtigkeit von WHILE

Satz

Die Programmiersprache WHILE ist Turing-m¨achtig.

Beweis:

Wir zeigen, dass jede Funktion, die durch eine TM berechnet werden kann, auch durch ein WHILE Programm berechnet werden kann.

(43)

Simulation von TM durch WHILE (1)

Wir betrachten eine TMM.

Zustandsmenge Q={q0, . . . ,qt}

Der Anfangszustand istq1, und der Endzustand istq0 TM im Zustand qi ⇐⇒ WHILE VariableZustand=i

BandalphabetΓ ={1,2,B}

WHILE kodiert Buchstaben 1 durch Dezimalziffer 1, Buchstaben 2 durch Dezimalziffer 2, und BuchstabenB durch Dezimalziffer 0.

Alle WHILE Variablen enthalten im Folgenden Dezimalzahlen

(44)

Simulation von TM durch WHILE (1)

Wir betrachten eine TMM.

Zustandsmenge Q={q0, . . . ,qt}

Der Anfangszustand istq1, und der Endzustand istq0 TM im Zustand qi ⇐⇒ WHILE VariableZustand=i BandalphabetΓ ={1,2,B}

WHILE kodiert Buchstaben 1 durch Dezimalziffer 1, Buchstaben 2 durch Dezimalziffer 2, und BuchstabenB durch Dezimalziffer 0.

Alle WHILE Variablen enthalten im Folgenden Dezimalzahlen

(45)

Simulation von TM durch WHILE (1)

Wir betrachten eine TMM.

Zustandsmenge Q={q0, . . . ,qt}

Der Anfangszustand istq1, und der Endzustand istq0 TM im Zustand qi ⇐⇒ WHILE VariableZustand=i BandalphabetΓ ={1,2,B}

WHILE kodiert Buchstaben 1 durch Dezimalziffer 1, Buchstaben 2 durch Dezimalziffer 2, und BuchstabenB durch Dezimalziffer 0.

Alle WHILE Variablen enthalten im Folgenden Dezimalzahlen

(46)

Simulierte TuringmaschineM:

· · ·

· · · B 1 1 2 2 2 1 2 1 1 1 B B B

δ 1 2 B

q1

q2

q3 (q2,1,R)

q3

Entsprechende Konfiguration: 1122q3212111 Vier entsprechende Variablen im WHILE Programm:

Band-vor-Kopf Kopf Zustand

pfoK-ba-danB

1122

2 3

11121

Variable BandLinks Variable UntermKopf; Zustand

Variable BandRechts

(47)

Simulation von TM durch WHILE (2)

Jeder Rechenschritt von M wird durch einige WHILE-Befehle simuliert.

Jeder Rechenschritt der TM besteht (gem¨ass ¨Uberf¨uhrungsfunktion) aus (A) Update von Zustand

(B) Update von Symbol unterm Kopf (C) Bewegung des Kopfes L,R,N

Beginn der Rechenschritt Simulation

Aktueller Zustand steht in der Variablen Zustand

Aktuelles Symbol unterm Kopf steht in der Variablen UntermKopf

(48)

Simulation von TM durch WHILE (2)

Jeder Rechenschritt von M wird durch einige WHILE-Befehle simuliert.

Jeder Rechenschritt der TM besteht (gem¨ass ¨Uberf¨uhrungsfunktion) aus (A) Update von Zustand

(B) Update von Symbol unterm Kopf (C) Bewegung des Kopfes L,R,N

Beginn der Rechenschritt Simulation

Aktueller Zustand steht in der Variablen Zustand

Aktuelles Symbol unterm Kopf steht in der Variablen UntermKopf

(49)

Simulation von TM durch WHILE (3A)

Jeder Rechenschritt der TM besteht (gem¨ass ¨Uberf¨uhrungsfunktion) aus (A) Update von Zustand

(B) Update von Symbol unterm Kopf (C) Bewegung des Kopfes L,R,N

Der Zustand wird auf den neuen Zustandqi gesetzt, indem man das folgende Programmst¨uck ausf¨uhrt:

Zustand:= i;

(50)

Simulation von TM durch WHILE (3B)

Jeder Rechenschritt der TM besteht (gem¨ass ¨Uberf¨uhrungsfunktion) aus (A) Update von Zustand

(B) Update von Symbol unterm Kopf (C) Bewegung des Kopfes L,R,N

Das Symbol unterm Kopf wird auf neues Symbolσ∈ {0,1,2} gesetzt, indem man das folgende Programmst¨uck ausf¨uhrt:

UntermKopf:= σ;

(51)

Simulation von TM durch WHILE (3C-links)

Jeder Rechenschritt der TM besteht (gem¨ass ¨Uberf¨uhrungsfunktion) aus (A) Update von Zustand

(B) Update von Symbol unterm Kopf (C) Bewegung des Kopfes L,R,N

Der Kopf wird einen Schritt nach links (L) bewegt, indem man das folgende Programmst¨uck ausf¨uhrt:

BandRechts:=10·BandRechts+UntermKopf;

UntermKopf:=BandLinks MOD 10;

(52)

Simulation von TM durch WHILE (3C-rechts)

Jeder Rechenschritt der TM besteht (gem¨ass ¨Uberf¨uhrungsfunktion) aus (A) Update von Zustand

(B) Update von Symbol unterm Kopf (C) Bewegung des Kopfes L,R,N

Der Kopf wird einen Schritt nach rechts (R) bewegt, indem man das folgende Programmst¨uck ausf¨uhrt:

BandLinks:=10·BandLinks+UntermKopf;

UntermKopf:=BandRechts MOD 10;

BandRechts:=BandRechts DIV 10;

(53)

Simulation von TM durch WHILE (3C-nichts)

Jeder Rechenschritt der TM besteht (gem¨ass ¨Uberf¨uhrungsfunktion) aus (A) Update von Zustand

(B) Update von Symbol unterm Kopf (C) Bewegung des Kopfes L,R,N

Der Kopf wird nicht bewegt (N),

indem man gar nichts macht und alle Variablen unver¨andert l¨asst:

(54)

Simulation von TM durch WHILE (4)

Schlussendlich die Grobstruktur der Simulation:

Initialisierung Zustand:=1;

BandLinks:=0;

UntermKopf:=Erstes Symbol im Eingabewort (als Dezimalziffer);

BandRechts:=Restliches gespiegeltes Eingabewort (dezimal);

(55)

Simulation von TM durch WHILE (5)

Die ¨aussere Schleife

WHILE Zustand6=0 DO

IF Zustand=1 AND UntermKopf=0 THEN SchrittENDIF;

IF Zustand=1 AND UntermKopf=1 THEN SchrittENDIF;

IF Zustand=1 AND UntermKopf=2 THEN SchrittENDIF;

IF Zustand=2 AND UntermKopf=0 THEN SchrittENDIF;

IF Zustand=2 AND UntermKopf=1 THEN SchrittENDIF;

IF Zustand=2 AND UntermKopf=2 THEN SchrittENDIF;

IF Zustand=3 AND UntermKopf=0 THEN SchrittENDIF;

... ... ... ...

... ... ... ...

IF Zustand=tAND UntermKopf=0 THEN SchrittENDIF;

(56)

Die Ackermann Funktion

(57)

Ackermann Funktion: Definition

Definition

Die Ackermann FunktionA:N2→Nist folgendermassen definiert:

A(0,n) = n+1 f¨urn≥0 A(m+1,0) = A(m,1) f¨urm≥0 A(m+1,n+1) = A(m,A(m+1,n)) f¨urm,n≥0

(58)

Ackermann Funktion: Beispiele (1)

A(0,n) = n+1 f¨urn≥0 A(m+1,0) = A(m,1) f¨urm≥0 A(m+1,n+1) = A(m,A(m+1,n)) f¨urm,n≥0

Ein paar Beispiele f¨urm=1: A(1,0) =A(0,1) =2

A(1,1) =A(0,A(1,0)) =A(1,0) +1=3 A(1,2) =A(0,A(1,1)) =A(1,1) +1=4 A(1,3) =A(0,A(1,2)) =A(1,2) +1=5 Beobachtung

A(1,n) =n+2

(59)

Ackermann Funktion: Beispiele (1)

A(0,n) = n+1 f¨urn≥0 A(m+1,0) = A(m,1) f¨urm≥0 A(m+1,n+1) = A(m,A(m+1,n)) f¨urm,n≥0

Ein paar Beispiele f¨urm=1:

A(1,0) =A(0,1) =2

A(1,1) =A(0,A(1,0)) =A(1,0) +1=3 A(1,2) =A(0,A(1,1)) =A(1,1) +1=4 A(1,3) =A(0,A(1,2)) =A(1,2) +1=5 Beobachtung

A(1,n) =n+2

(60)

Ackermann Funktion: Beispiele (1)

A(0,n) = n+1 f¨urn≥0 A(m+1,0) = A(m,1) f¨urm≥0 A(m+1,n+1) = A(m,A(m+1,n)) f¨urm,n≥0

Ein paar Beispiele f¨urm=1:

A(1,0) =A(0,1) =2

A(1,1) =A(0,A(1,0)) =A(1,0) +1=3 A(1,2) =A(0,A(1,1)) =A(1,1) +1=4 A(1,3) =A(0,A(1,2)) =A(1,2) +1=5 Beobachtung

A(1,n) =n+2

(61)

Ackermann Funktion: Beispiele (1)

A(0,n) = n+1 f¨urn≥0 A(m+1,0) = A(m,1) f¨urm≥0 A(m+1,n+1) = A(m,A(m+1,n)) f¨urm,n≥0

Ein paar Beispiele f¨urm=1:

A(1,0) =A(0,1) =2 A(1,1) =

A(0,A(1,0)) =A(1,0) +1=3 A(1,2) =A(0,A(1,1)) =A(1,1) +1=4 A(1,3) =A(0,A(1,2)) =A(1,2) +1=5 Beobachtung

A(1,n) =n+2

(62)

Ackermann Funktion: Beispiele (1)

A(0,n) = n+1 f¨urn≥0 A(m+1,0) = A(m,1) f¨urm≥0 A(m+1,n+1) = A(m,A(m+1,n)) f¨urm,n≥0

Ein paar Beispiele f¨urm=1:

A(1,0) =A(0,1) =2

A(1,1) =A(0,A(1,0)) =A(1,0) +1=3

A(1,2) =A(0,A(1,1)) =A(1,1) +1=4 A(1,3) =A(0,A(1,2)) =A(1,2) +1=5 Beobachtung

A(1,n) =n+2

(63)

Ackermann Funktion: Beispiele (1)

A(0,n) = n+1 f¨urn≥0 A(m+1,0) = A(m,1) f¨urm≥0 A(m+1,n+1) = A(m,A(m+1,n)) f¨urm,n≥0

Ein paar Beispiele f¨urm=1:

A(1,0) =A(0,1) =2

A(1,1) =A(0,A(1,0)) =A(1,0) +1=3 A(1,2) =A(0,A(1,1)) =A(1,1) +1=4 A(1,3) =A(0,A(1,2)) =A(1,2) +1=5

Beobachtung A(1,n) =n+2

(64)

Ackermann Funktion: Beispiele (1)

A(0,n) = n+1 f¨urn≥0 A(m+1,0) = A(m,1) f¨urm≥0 A(m+1,n+1) = A(m,A(m+1,n)) f¨urm,n≥0

Ein paar Beispiele f¨urm=1:

A(1,0) =A(0,1) =2

A(1,1) =A(0,A(1,0)) =A(1,0) +1=3 A(1,2) =A(0,A(1,1)) =A(1,1) +1=4 A(1,3) =A(0,A(1,2)) =A(1,2) +1=5

Beobachtung A(1,n) =n+2

(65)

Ackermann Funktion: Beispiele (2)

A(0,n) = n+1 f¨urn≥0 A(m+1,0) = A(m,1) f¨urm≥0 A(m+1,n+1) = A(m,A(m+1,n)) f¨urm,n≥0

Ein paar Beispiele f¨urm=2:

A(2,0) =A(1,1) =3

A(2,1) =A(1,A(2,0)) =A(2,0) +2=5

A(2,2) =A(1,A(2,1)) =A(2,1) +2=7

Beobachtung

A(2,n) =2n+3

(66)

Ackermann Funktion: Beispiele (2)

A(0,n) = n+1 f¨urn≥0 A(m+1,0) = A(m,1) f¨urm≥0 A(m+1,n+1) = A(m,A(m+1,n)) f¨urm,n≥0

Ein paar Beispiele f¨urm=2:

A(2,0) =A(1,1) =3

A(2,1) =A(1,A(2,0)) =A(2,0) +2=5 A(2,2) =A(1,A(2,1)) =A(2,1) +2=7

Beobachtung

A(2,n) =2n+3

(67)

Ackermann Funktion: Beispiele (2)

A(0,n) = n+1 f¨urn≥0 A(m+1,0) = A(m,1) f¨urm≥0 A(m+1,n+1) = A(m,A(m+1,n)) f¨urm,n≥0

Ein paar Beispiele f¨urm=2:

A(2,0) =A(1,1) =3

A(2,1) =A(1,A(2,0)) =A(2,0) +2=5 A(2,2) =A(1,A(2,1)) =A(2,1) +2=7

2n+3

(68)

Ackermann Funktion: Beispiele (2)

A(0,n) = n+1 f¨urn≥0 A(m+1,0) = A(m,1) f¨urm≥0 A(m+1,n+1) = A(m,A(m+1,n)) f¨urm,n≥0

Ein paar Beispiele f¨urm=2:

A(2,0) =A(1,1) =3

A(2,1) =A(1,A(2,0)) =A(2,0) +2=5 A(2,2) =A(1,A(2,1)) =A(2,1) +2=7

Beobachtung

A(2,n) =2n+3

(69)

Ackermann Funktion: Beispiele (3)

A(0,n) = n+1 f¨urn≥0 A(m+1,0) = A(m,1) f¨urm≥0 A(m+1,n+1) = A(m,A(m+1,n)) f¨urm,n≥0

Und ein paar Beispiele f¨urm=3:

A(3,0) =A(2,1) =5

A(3,1) =A(2,A(3,0)) =2·A(3,0) +3=13 A(3,2) =A(2,A(3,1)) =2·A(3,1) +3=29 A(3,3) =A(2,A(3,2)) =2·A(3,2) +3=61 Beobachtung

A(3,n) =2n+3−3

(70)

Ackermann Funktion: Beispiele (3)

A(0,n) = n+1 f¨urn≥0 A(m+1,0) = A(m,1) f¨urm≥0 A(m+1,n+1) = A(m,A(m+1,n)) f¨urm,n≥0

Und ein paar Beispiele f¨urm=3:

A(3,0) =A(2,1) =5

A(3,1) =A(2,A(3,0)) =2·A(3,0) +3=13

A(3,2) =A(2,A(3,1)) =2·A(3,1) +3=29 A(3,3) =A(2,A(3,2)) =2·A(3,2) +3=61 Beobachtung

A(3,n) =2n+3−3

(71)

Ackermann Funktion: Beispiele (3)

A(0,n) = n+1 f¨urn≥0 A(m+1,0) = A(m,1) f¨urm≥0 A(m+1,n+1) = A(m,A(m+1,n)) f¨urm,n≥0

Und ein paar Beispiele f¨urm=3:

A(3,0) =A(2,1) =5

A(3,1) =A(2,A(3,0)) =2·A(3,0) +3=13 A(3,2) =A(2,A(3,1)) =2·A(3,1) +3=29 A(3,3) =A(2,A(3,2)) =2·A(3,2) +3=61

Beobachtung

A(3,n) =2n+3−3

(72)

Ackermann Funktion: Beispiele (3)

A(0,n) = n+1 f¨urn≥0 A(m+1,0) = A(m,1) f¨urm≥0 A(m+1,n+1) = A(m,A(m+1,n)) f¨urm,n≥0

Und ein paar Beispiele f¨urm=3:

A(3,0) =A(2,1) =5

A(3,1) =A(2,A(3,0)) =2·A(3,0) +3=13 A(3,2) =A(2,A(3,1)) =2·A(3,1) +3=29 A(3,3) =A(2,A(3,2)) =2·A(3,2) +3=61

Beobachtung A(3,n) =

2n+3−3

(73)

Ackermann Funktion: Beispiele (3)

A(0,n) = n+1 f¨urn≥0 A(m+1,0) = A(m,1) f¨urm≥0 A(m+1,n+1) = A(m,A(m+1,n)) f¨urm,n≥0

Und ein paar Beispiele f¨urm=3:

A(3,0) =A(2,1) =5

A(3,1) =A(2,A(3,0)) =2·A(3,0) +3=13 A(3,2) =A(2,A(3,1)) =2·A(3,1) +3=29 A(3,3) =A(2,A(3,2)) =2·A(3,2) +3=61

(74)

Ackermann Funktion: Beispiele (4)

Zusammenfassung der Beispiele

Wenn man den ersten Parameter fixiert ...

A(1,n) =n+2 A(2,n) =2n+3 A(3,n) =2n+3−3 A(4,n) = 22··

·2

| {z } n+3 viele

Zweien

−3

Bereits der Wert A(4,2) =265536−3

ist gr¨osser als die Anzahl aller Atome im Weltraum.

Referenzen

ÄHNLICHE DOKUMENTE

WHILE ist Turing-m¨ achtig Die Ackermann Funktion.. Die Programmiersprache LOOP.. ¨ Andert sich der Wert von x i im Inneren von P, so hat dies keinen Einfluss auf die Anzahl

Das Symbol unterm Kopf wird auf neues Symbol σ ∈ {0, 1, 2} gesetzt, indem man das folgende Programmst¨ uck ausf¨ uhrt:. UntermKopf

Zwecks Widerspruchs nehmen wir an, dass die Ackermann Funktion LOOP-berechenbar ist.. Die M¨ achtigkeit von

Ein schneller Algorithmus f¨ ur das Entscheidungsproblem liefert (durch wiederholte Anwendung) oft auch einen schnellen Algorithmus zum Berechnen eines expliziten L¨

Auch wenn eine Aufgabe als Entscheidungsfrage formuliert wird, gibt es f¨ ur ein einfaches Ja oder Nein keine Punkte. Allgemein: Punkte werden bei der Klausur haupts¨ achlich f¨

F¨ ur eine abz¨ ahlbar unendliche Menge M gibt es immer auch eine bijektive (bijektiv = surjektiv+injektiv) Abbildung c : N → M: Wiederholungen von Elementen von M k¨ onnen bei der

Aktueller Zustand steht in der Variablen Zustand Das Symbol unterm Kopf erhalten wir durch den Befehl UntermKopf := BandAbKopf MOD 10.. Simulation von TM durch

Eigenschaften der Ackermann Funktion Ackermann Funktion und LOOP-Programme Primitiv rekursive Funktionen... M¨ achtigkeit