• Keine Ergebnisse gefunden

o Review: Mobile IPv6

N/A
N/A
Protected

Academic year: 2022

Aktie "o Review: Mobile IPv6"

Copied!
47
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

haw-hamburg.de

Mobility Optimization in IPv6 Networks

o Mobility Paradigm

o Review: Mobile IPv6

o Handover Acceleration

o Predictive versus Reactive

o Comparison: SIP Mobility

(2)

schmidt@informatik.

haw-hamburg.de

VCoIP in Praxis

(3)

haw-hamburg.de

(4)

schmidt@informatik.

haw-hamburg.de

VCoIP in Praxis

(5)

haw-hamburg.de

IP Mobility Approaches

o Application: SIP Handover

- SIP-server as application specific home agent

o Transport: Mobile SCTP

- Stateful transport handover (doubly bound)

o Multicast-based IP Mobility Support

- Mobile with personal multicast address

o Mobile IPv6

- Stateless, transport transparent handover

(6)

schmidt@informatik.

haw-hamburg.de

MIPv6 Release – Mobility on the Rise?

(7)

haw-hamburg.de

What may we expect?

o Devices using Home Address while away

o ‘Workspaces’ roaming between local subnets +Improvements on handover performance +3G Mobiles operating IP

+ …

o VoIP/VCoIP conferencing: real-time mobility

o Group communication by Mobile Multicast

(8)

Thomas Schmidt schmidt@informatik.

haw-hamburg.de

3GPP/UMTS Release 5 Referenz-Modell

Gf Gi

Iu

Mr Gi Ms

Gi Gc Gr

GGSN EIR

MGCF R-SGW

MRF

Multimedia IP Networks Applications &

Services *)

Mm Mw

Legacy mobile signaling Network

Mc Cx

R Um

TE MT BSS/GRAN

Mh

CSCF

CSCF

Mg

T-SGW *) HSS *)

SCP

CAP

Gi

R Uu

MGW Gn

Signalling and Data Transfer Interface Signalling Interface

TE MT UTRAN PSTN/

Legacy/External

T-SGW *)

HSS *) Applications

& Services *)

GMSC server

*) those elements are duplicated for figure layout purpose only, they belong to the same logical element in the reference model Mc Mc

D

C MGW

Nb

Nc Iu1

Iu

2

R-SGW *) Mh

MSC server SGSN

MS Circuit Switch Access Network

GPRS Access Network

IM Domain

CS Domain PS Domain

Iu A

CAP CAP Alternative

Access Network

Gb

IM Domain is now a sub-set of the PS Domain

UMTS Release 5 requires IPv6 !

(9)

haw-hamburg.de

IP Mobility ?

Problem:

Preserve Upper Layer (L 4+) Communication when changing IP Subnets Key Aspects:

- Mobile Node‘s (MN) global adressability (fixed Home Address) - Mobile Node‘s local adressability (changing Care of Address) - Keeping partners informed (updating Correspondent Nodes) - Enabling efficient communication (shortcuts)

Approaches:

Mobile IPv4: IP Mobility Support for IPv4 (RFC 3344)

Mobile IPv6: Mobility Support in IPv6 (RFC 3775/3776)

(10)

schmidt@informatik.

haw-hamburg.de

Mobile IP

o IPv4‘s Design Stationary (Routing-Updates Slow)

o Implementation of Mobile Services: Tunneling via Home Agent o IPv6 Potential:

- Several Addresses (2 for Mobile Node, many for Mobile Networks) - Flexible Architecture - no dedicated Access-Services (Agents, DHCP)

Internet

Mobile Node Home

Agent Access Router

(11)

haw-hamburg.de

Kommunikations- partner

home agent

foreign agent Mobiler Host

Heimat des mobilen Host

Mobile IPv4

(12)

schmidt@informatik.

haw-hamburg.de

Kommunikations- partner

home agent

Mobiler Host

Heimat des mobilen Host

Mobile IPv6

(13)

haw-hamburg.de

Mobile IPv6

register

Binding Updates

(14)

schmidt@informatik.

haw-hamburg.de

Basic Mobile IPv6

MIPv6 transparantly operates address changes on IP layer by:

o MN‘s stateless configuration of Care of Address in a foreign network and Binding Updates (BUs) with Home Agent (HA) and Correspondent (CNs).

o MN continues to use its original Home Address in a Destination Option Header, thereby hiding different routes to the socket layer.

o CNs continues to use Home Address of the MN, placing current CoA in a Routing Header as Source Route.

o MN, CN & HA keep Binding Cache Tables.

o Home-Agent needed as Address Dispatcher.

(15)

haw-hamburg.de

Handover Steps

o Layer 2 Handover

o L3 Movement Discovery o Local Addressing

o Duplicate Address Detection

o Binding Update with Home Agent

o Binding Update with Correspondent Node

(16)

schmidt@informatik.

haw-hamburg.de

Handover Security

Binding Udates place a severe security challenge:

MN must prove that it owns claimed IP addresses o BU with HA: IPsec Security Association (strong coupling)

o BU with CN: Return Routablility Procedure (lightweight coupling) to test correctness of MN’s HoA and CoA

- HoTI/HoT: MN(Cookie) → HA → CN (HToken, Cookie) → HA → MN - CoTI/CoT: MN (Cookie) → CN (CToken, Cookie) → MN

- Finally do BU with Hash(HToken, CToken) invertable by CN

o BU improvements: CGA-based (OMIPv6)

(17)

haw-hamburg.de

Real-Time Requirements

! Latency ≈< 100 ms

! Jitter ≈< 50 ms

! Packet loss ≈< 1 %

! Interruption: 100 ms ≈ 1 spoken syllable

→ 100 ms are critical bound

(18)

Thomas Schmidt schmidt@informatik.

haw-hamburg.de

Local Handover Measurements:

Empirical Results

(19)

haw-hamburg.de

L2-Trigger & L2 Handover

IP - Reduce

- MAX_RA_DELAY_TIME ≈ 1 – 3 ms

- MAX_RTR_SOLICITATION_DELAY ≈ 1 – 3 ms

802.11b - Schulzrinne et al.:

Selective Scan + Cache

(20)

MIPv6 Handover:

Topology Problem

Thomas Schmidt schmidt@informatik.

haw-hamburg.de

o Generally HA and CN are at Significant Distance o Handover Time: ( t X is RTT MN ↔ X)

o Jitter Enhancement:

o Essential: Eliminate HA/CN RTT Dependence

HA CN

local

CN of

BU HA

of BU local

handoff

t t

t

t t

t t

2 2

3 +

+

+ +

=

CN

CN HA

stationary handoff

t

t t

Jitter

Jitter +

(21)

haw-hamburg.de

Fast MIPv6 (RFC 4068)

(22)

Thomas Schmidt schmidt@informatik.

haw-hamburg.de

Reactive Handover with Proxies:

Hierarchical MIPv6 (RFC 4140)

(23)

haw-hamburg.de

Predictive versus Reactive

Relevant criteria

►Handover performance: packet loss, delay + jitter

►Number of performed handovers

►Number of processed handovers

►Robustness

►Handover Costs

(24)

schmidt@informatik.

haw-hamburg.de

o Compare reactive vers.

predictive handover

o Characteristic to problem:

Router distance

o Charac. to predictive HO:

o Charac. to reactive HO:

Simple analytical model:

3

t l

) (

) 2

( t

Ant

t

l3

+ t

L2

t

l3

2

3 L

l

t

t +

Handover Performance

(25)

haw-hamburg.de

More detailed …

o Reactive Handover:

o Predictive Handover (successful):

where

(26)

schmidt@informatik.

haw-hamburg.de

Packet Loss Function

L2 Delay: 50 ms

Traffic:

CBR at 1 Pkt/10 ms

(27)

haw-hamburg.de

Comparative Samples

(28)

schmidt@informatik.

haw-hamburg.de

Stochastic Simulation

o Constant bit rate traffic from CN/HA (at 10 ms) o Random perturbations (ξ) at each link

o Parameters:

- Anticipation Time: <x> = * ms, ξ = 30 ms

- L2 Handoff: <x> = 50 ms, ξ = 10 ms

- Local Links: <x> = 2 ms, ξ = 1 ms

(29)

haw-hamburg.de

Simulation: Packet Loss

(30)

schmidt@informatik.

haw-hamburg.de

Why is Reality Worse?

Analytical Model did not Account for o Geometry

o Link Perturbation

o Limitations in Completing HO Negotiation

(31)

haw-hamburg.de

Negotiation

(32)

schmidt@informatik.

haw-hamburg.de

Details on Packet Loss

(33)

haw-hamburg.de

Number of Handovers

Relevant quantities:

- Cell residence time - Call holding time - AR-to-MAP ratio

Modelling assumptions:

- Cell residence & call holding time exp. distributed

(homogeneous distribution)

(34)

schmidt@informatik.

haw-hamburg.de

Expected # of Handovers

[ ] HO k ρ 1 k 1 ρ

E =

2

+

Analytical result:

ρ = Call-to-mobility factor

k = AR-to-MAP ratio

(35)

haw-hamburg.de

Stochastic Simulation

Models:

Random Waypoint Varying Geometry

Random Direction

Varying Geometry

Varying Speeds

(36)

schmidt@informatik.

haw-hamburg.de

Mean Handover Frequencies:

Random Waypoint Model

(37)

haw-hamburg.de

Random Direction Model

(38)

schmidt@informatik.

haw-hamburg.de

Erroneous Prediction Yields

(39)

haw-hamburg.de

Variation of Interference Radii

(40)

schmidt@informatik.

haw-hamburg.de

Handovers for Varying

Interference Radii

(41)

haw-hamburg.de

Varying Interference Radii

About 50 %

Bad Predictions

(42)

schmidt@informatik.

haw-hamburg.de

Sources of Erroneous Prediction

(43)

haw-hamburg.de

Robustness

o Topology

FMIPv6 and HMIPv6 both are unaffected by long distance topology (local ‘step size’ only)

o Rapid Movement

FMIPv6: Forwarding will fail for handover intervals below inter-AR signalling period

HMIPv6: Forwarding will function for any handover

frequency, but delays may increase

(44)

schmidt@informatik.

haw-hamburg.de

Application Layer:

Performance of SIP Handover

(45)

haw-hamburg.de

Performance of SIP Handover (2)

(46)

schmidt@informatik.

haw-hamburg.de

Performance of SIP Handover (3)

(47)

haw-hamburg.de

Additional Topics

• HA Autodiscovery

• Multihoming

• Mobile Multicasting

References

• Hesham Soliman: Mobile IPv6, Addison Wesley, 2004

• www.rfc-editor.org

• Schmidt, Wählisch: Predictive versus Reactive – Analysis of Handover Performance and Its Implications on IPv6 and Multicast Mobility,

Telecomm. Systems, 30, 1, In Print, 2005.

• Ted T. Kwon et al: Mobility Management for VoIP Services: Mobile IP vs. SIP, IEEE Wireless Communications, Oct 2002.

• Seamless Context Transfers

• Mobility Support in NAT-PT

• Location Privacy

• MIPv6 Management

Referenzen

ÄHNLICHE DOKUMENTE

[2] SeungSun Hong et al: “Multihoming Scenarios with Multiple Home Agents in Mobile IPv6”, IETF Internet Draft , work in progress: draft-hong-mip6-multihoming-scenarios-

- Protocol translator, which let IPv6 devices with IPv4 devices speak. During migration, the combined use of all these methods is

• Schmidt, Wählisch: Predictive versus Reactive – Analysis of Handover Performance and Its Implications on IPv6 and Multicast

o Assigns an IPv6 network to each IPv4 address (taken as prefix). o Allows IPv6 islands to automatically interconnect,

o Devices can keep their addresses (IPv4 in IPv6) o Application / libraries choose the IP version:. - in dependence of DNS answer with IPv6 preference - in dependence of

However, we believe that even though im- perfect the data still yields useful information about IPv6 adoption for the following reasons: (i) no substitute data lacking bias

- Address hierarchy can (was intended to) simplify backbone routing - Several addresses per interface.. o

- Tunnel, which connects IPv6 regions over IPv4 regions. - Protocol translator, which let IPv6 devices with IPv4 devices