• Keine Ergebnisse gefunden

The effects of a subacute rumen acidosis and the subsequent recovery process on fermentation patterns and the microbial community using the Rumen Simulation Technique

N/A
N/A
Protected

Academic year: 2022

Aktie "The effects of a subacute rumen acidosis and the subsequent recovery process on fermentation patterns and the microbial community using the Rumen Simulation Technique"

Copied!
176
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

University  of  Veterinary  Medicine  Hanover  

   

The  effects  of  a  subacute  rumen  acidosis  and  the  subsequent   recovery  process  on  fermentation  patterns  and  the  microbial  

community  using  the  Rumen  Simulation  Technique    

   

Inaugural-­Dissertation  

in  fulfillment  of  the  requirements  of  the  degree  of       Doctor  of  Veterinary  Medicine  

-­Doctor  medicinae  veterinariae-­  

(Dr.  med.  vet.)      

       

submitted  by  

Theresa  Wilhelmina  Orton,     née  Maasjost  

Vechta    

Hannover  2019  

(2)

University  of  Veterinary  Medicine,  Hanover   Institute  for  Physiology  and  Cell  Biology    

        Melanie  Eger,  Ph.D.  

University  of  Veterinary  Medicine,  Hanover   Institute  for  Physiology  and  Cell  Biology    

     

   

                     

1st  Referee:   Prof.  Dr.  Gerhard  Breves  

2nd  Referee:    Prof.  Dr.  Martina  Hoedemaker,  Ph.D.  

 

Day  of  the  oral  examination:  05.11.2019  

(3)

       

Meiner  Familie    

               

(4)

 

T  Orton,  K  Rohn,  G  Breves,  M  Eger,  2019  

Alterations  in  fermentation  parameters  during  and  after  induction  of  a   subacute  rumen  acidosis  in  the  rumen  simulation  technique  

 

T  Orton,  M  Eger,  B  Pinior,  F  Roch,  B  Zwirzit,  G  Breves,  S  U  Wetzels  

Analyzing  the  impact  of  an  in  vitro  subacute  rumen  acidosis  on  the  bacterial   community  and  the  recovery  process  applying  amplicon  Illumina  MiSeq  and   PacBio  sequencing  

 

Parts  of  this  thesis  have  been  presented  at  a  conference:  

T  Maasjost,  M  Eger,  G  Breves    

Effects  of  different  concentrate  levels  and  buffer  compositions  on  the  

induction  of  a  subacute  acidosis  by  applying  the  Rumen  Simulation  Technique    

73rd  Conference  of  the  Society  of  Nutrition  Physiology,     13th  –  15th  March,  2019  in  Göttingen  

Abstract  published  in  the  Proceedings  of  the  Society  of  Nutrition  Physiology   Volume  28,  2019;;  ISBN  978-­3-­7690-­4112-­5,  p.  119.  

         

(5)

G  Breves,  S  U  Wetzels  

The  bacterial  community  dynamics  in  a  subacute  ruminal  acidosis  evaluated   by  Rumen  Simulation  Technique  (RUSITEC)  

International  Symposium  on  Ruminant  Physiology,     3rd  –  6th  September,  2019  in  Leipzig  

Abstract  published  in  the  Proceedings  of  the  XIIIth  International  Symposium  on   Ruminant  Physiology  (ISRP  2019),  Advances  in  Animal  Biosciences,  ISSN  2040-­

4700,  p.  632.      

(6)

 

Introduction  ...  11  

1   Review  of  literature  ...  13  

1.1   Degradation  of  feed  and  pH  regulation  in  the  rumen  ...  13  

1.2   Rumen  acidosis  ...  20  

1.3   Bacterial  alterations  during  subacute  rumen  acidosis  ...  23  

1.4   In  vivo  models  for  subacute  rumen  acidosis  ...  26  

1.5   In  vitro  models  for  subacute  rumen  acidosis  ...  28  

2   Material  and  methods  ...  31  

2.1   Animals  ...  31  

2.2   Experimental  set  up:  The  Rumen  Simulation  Technique  ...  31  

2.3   Experimental  design  and  sampling  scheme  ...  34  

2.4   Measurement  of  fermentation  parameters  ...  35  

2.4.1   pH  and  redox  potential  ...  35  

2.4.2   Lactate  ...  35  

2.4.3   Ammonia-­N  ...  36  

2.4.4   Short  chained  fatty  acids  ...  36  

2.4.5   Degradation  of  organic  matter  ...  37  

2.5   Microbial  isolation  and  DNA  preparation  ...  38  

2.5.1   Sequencing  of  the  bacterial  community  ...  39  

2.5.2   Illumina  MiSeq  ...  39  

2.5.3   PacBio  ...  40  

3   Results  in  form  of  two  manuscripts  ...  42  

3.1   Alterations  in  fermentation  parameters  during  and  after  induction  of  a   subacute  rumen  acidosis  in  the  rumen  simulation  technique  ...  42  

(7)

community  and  the  recovery  process  applying  amplicon  Illumina  MiSeq  and  

PacBio  sequencing  ...  72  

4   Discussion  ...  127  

4.1   Material  and  methods  ...  127  

4.1.1   Donor  animals  and  inoculum  ...  127  

4.1.2   The  Rusitec  system  as  an  in  vitro  model  ...  127  

4.1.3   Induction  of  subacute  acidosis  in  the  Rusitec  model  compared  to  in  vivo   methods  ...  130  

4.1.4   DNA  extraction  procedure  ...  133  

4.1.5   The  application  of  Illumina  MiSeq  and  PacBio  sequencing  in  rumen   research  ...  134  

4.2   Results  of  the  biochemical  and  microbial  analysis  ...  137  

4.2.1   Acidosis  induction  affects  fermentation  patterns  and  bacterial   abundances  ...  137  

4.2.2   The  roughage-­to-­concentrate  ratio  influences  the  ruminal  fermentation   pattern  ...  141  

4.2.3   Fermentation  pattern  and  bacterial  abundance  is  able  to  recover  from   acidosis  ...  144  

6   Summary  ...  147  

7   Zusammenfassung  ...  150  

8   References  ...  153  

9   Appendix  ...  174  

9.1   Buffer  solutions  for  pH  maintenance  in  the  Rusitec  ...  174  

9.2   Methylcellulose  solution  for  the  detachment  of  solid  associated   microorganisms  ...  174  

9.3   Ammonia-­N  measurement  ...  174  

10   Danksagung  ...  175  

(8)

Figures    

Figure  1      The  Rusitec  model  ...  33   Figure  2      Experimental  design  and  sampling  schedule  ...  34  

   

(9)

 

°C   degree  Celsius  

µl   micro  liter   AI   acidosis  I  buffer   AII   acidosis  II  buffer   AP   acidosis  period  

Aqua  dest.   aqua  destillata  (destilled  water)   ARA   acute  rumen  acidosis  

ASV   amplicon  sequence  variant   CaCl   calcium  chloride  

cm   centimeter  

CO2   carbon  dioxide   CP  I   first  control  period   CP  II   second  control  period  

d   day  

DNA     deoxyribonucleic  acid  

g   gram  

g   centrifugal  acceleration  expressed  as  a  multiple  of  gravity   (gn  =  9.80665  m  ∙  s  -­2)  

h   hour  

H   hydrogen  

H2O   water  

HCl   hydrochloric  acid   HCO3   bicarbonate  

KCl   potassium  chloride  

kg   kilogram  

LAM   liquid  associated  microorganisms  

M   molar  

min   minutes  

ml   milliliter  

mM   Millimolar  

(10)

mm2   square  millimeter   mmol   millimole  

N   nitrogen  

Na+   sodium  

NaH2PO4   sodium  dihydrogen  phosphate   Na2HPO4   disodium  hydrogen  phosphate   NaCl   sodium  chloride  

NaHCO3   sodium  bicarbonate   NaOH   sodium  hydroxide  

NGS   next  generation  sequencing   NH3-­N   ammonia  N  

NH4Cl   ammonium  chloride  

nm   nanometer  

OM   organic  matter  

OTU   operational  taxonomic  unit   p   probability  value  

PCR   polymerase  chain  reaction   RNA   ribonucleic  acid  

rpm   rounds  per  minute  

SAM   solid  associated  microorganisms   SARA   subacute  rumen  acidosis  

SCFA   short  chained  fatty  acids   SD   standard  deviation   SDS   sodium  dodecyl  sulfate   SEM   standard  error  of  mean  

SMRT   single-­molecule  real-­time  sequencing   ST   standard  buffer  

ZMW   zero-­mode  wave  guides    

(11)

Introduction  

In  the  past  decades,  cattle  farming  has  changed  dramatically.  To  satisfy  the  world’s   increasing   population   and   the   demand   of   high-­quality   animal   protein,   production   efficiency  has  increased  by  54%  in  dairy  and  45%  in  beef  production  (Pitta  et  al.,  2018;;  

USDA_NASS,  2014).  While  the  number  of  dairy  farms  has  continuously  declined,  the   individual  milk  yield  of  each  animal  increased  significantly  (Capper  et  al.,  2009).  The   elevated  demand  can  only  be  met  through  genetic  selection  focusing  on  a  high  yielding   production  rate,  at  the  expense  of  longevity  and  general  health  (Oltenacu  and  Broom,   2010).   The   productivity   of   the   individual   animal   is   dependent   on   the   microbial   community  in  the  rumen,  which  enables  the  animal  to  digest  and  breakdown  cellulose   and  plant  material  (Mizrahi,  2013).  The  rumen  microorganisms  supply  the  animal  with   energy  in  form  of  short  chained  fatty  acids  (SCFA)  and  protein  (Barcroft  et  al.,  1944,   France  and  Dijkstra,  2005).  One  of  the  most  common  disorders  in  dairy  cattle  farming   is  rumen  acidosis  (Nagaraja  and  Lechtenberg,  2007),  which  describes  a  fermentative   dysfunction   based   on   an   impaired   rumen   pH   regulation.   This   mostly   affects   high   yielding   dairy   cows,   especially   during   early   lactation   and   beef   cattle   in   the   finishing   period  (Nocek,  1997,  Kleen  et  al.,  2003).  During  this  time,  the  animals  experience  a   dietary   change.   Beef   cattle   are   fed   intensively   with   concentrate   to   enhance   meat   production,   while   the   onset   of   lactation   demands   an   increased   energy   supply.   The   transition  from  low  to  high  grain  diets  is  challenging  for  the  rumen  mucosa  and  the   rumen  microbial  community  and  therefore  sufficient  time  for  adjustment  is  required.  An   increasing  amount  of  dietary  concentrate  enhances  the  accumulation  of  SCFA  in  the   rumen,   which   lead   to   a   decrease   in   ruminal   pH   (Krause   and   Oetzel,   2005).  

Maladaptation   enhances   the   probability   of   rumen   acidosis   (Dirksen   et   al.,   1984).  

(12)

Despite   of   certain   predispositions,   all   ruminants   can   experience   rumen   acidosis   (Enemark  et  al.,  2002).  Several  sequelae  are  reported  to  be  associated  with  rumen   acidosis,   such   as   laminitis,   diarrhea,   and   ruminitis   (Stone,   2004).   Furthermore,   the   reduced   milk   yield   and   a   diminished   amount   of   milk   fat   have   significant   financial   implications.   Due   to   the   major   effects   of   the   rumen   acidosis   on   animal   health   and   wellbeing,   and   furthermore,   the   great   financial   and   economic   consequences,   this   fermentative  dysfunction  has  been  a  major  topic  of  research  for  the  past  decades.  With   the  present  work,  we  aimed  to  provide  an  in  vitro  model  to  mimic  subacute  acidosis   under  laboratory  conditions.  We  investigated  the  impact  of  an  acidotic  challenge  in  an   in   vitro   model,   firstly,   observed   changes   in   the   ruminal   fermentation   pattern,   and   secondly  alterations  in  the  bacterial  population.  Furthermore,  we  analyzed  the  recovery   of   fermentation   patterns   and   the   bacterial   population   within   this  in   vitro   model.   The   present  work  aims  to  provide  an  in  vitro  system  to  participate  in  the  numerical  reduction   of   animal   testing   in   primary   research   and   provide   new   possibilities   of   testing   feed   additives   improving   acidosis   treatment   and   prevention   strategies.   Furthermore,   we   aimed  to  improve  the  knowledge  about  the  bacterial  population  dynamics  within  this  in   vitro  model  and  evaluated  the  usability  of  two  next  generation  sequencing  approaches.    

 

   

(13)

1   Review  of  literature  

1.1   Degradation  of  feed  and  pH  regulation  in  the  rumen    

Ruminants  are  very  well  adapted  to  digest  plant  material,  which  is  rich  in  fiber  and  low   in  energy.  Therefore,  the  ruminal  flora  and  the  host  ruminant  form  a  strong  symbiotic   relationship.  A  large  group  of  bacteria,  protozoa  and  fungi  decompose  plant  material,   which  the  host  animal  alone  would  not  be  capable  of  breaking  down  (McCann  et  al.,   2016).   The   majority   of   the   ruminant’s   energy   requirements   are   met   by   microbial   fermentation   (Byrant,   1970).   Ammonia   and   peptides,   as   much   as   fiber   and   carbohydrates   deliver   the   majority   of   the   energy   (Pitta   et   al.,   2018).   This   includes   neutral   detergent   insoluble   fiber   polysaccharides,   like   cellulose   and   hemicellulose.  

Furthermore,   the   microbial   community   digests   non-­fiber   carbohydrates,   like   sugars,   starch  and  water-­soluble  carbohydrates  (pectin,  b-­glucans,  galactans).  Side  products   include  carbon  dioxide  and  methane.  Gasses  escape  the  rumen  through  eructation,   which  implies  an  energy  loss  due  to  methane  of  more  than  12%  (Pitta  et  al.,  2018).  

The  retention  time  within  the  forestomach  is  dependent  on  the  forage  to  concentrate   ratio   (Bartocci   et   al.,   1997)   and   the   particle   size   (Welch,   1986).   The   retention   time   varies  between  18  h  (Poppi  et  al.,  1981)  and  72  h,  and  is  of  major  importance  for  the   degradation  of  feed  particles,  but  also  for  the  maintenance  of  the  microbial  diversity.  

Due  to  the  non-­fastidious  nature  of  protozoa  and  fungi,  both  are  especially  dependent   on  long  retention  times.  With  generation  times  of  5  to  14  h  for  ruminal  protozoa  and  up   to  30  h  for  fungal  communities  shortened  retention  times  may  lead  to  a  rapid  deletion   of  these  organisms  (McAllister  et  al.,  1994).  

Even  though  Protozoa  species  maintain  up  to  50%  of  the  microbial  mass  in  the  rumen,   their  role  within  the  community  has  not  yet  been  completely  elucidated  (Newbold  et  al.,  

(14)

2015,  Levy  and  Jami,  2018).  There  are  two  main  groups  within  the  ciliate  population,   which  differ  morphologically  and  also  in  their  substrate  preferences.  Holotricha,  with   almost   uniformal   somatic   cilia   mostly   degrade   soluble   substances,   whereas   entodinomorphoid  protozoa  are  characterized  by  a  firm  pellicle  and  the  possession  of   cilia  on  the  peristome.  These  ciliates  mainly  digest  smaller,  solid  particles  (Belanche   et  al.,  2015a).  Protozoa  gain  particular  significance  in  the  ruminal  ecosystem,  as  they   participate   in   the   ruminal   pH   maintenance   (Lee   et   al.,   2000).   Protozoa   restrict   the   availability   of   starch   and   glucose   molecules   from   rapid   bacterial   fermentation.   The   ciliates  ferment  substrates  slowly  and  release  them  into  the  rumen  at  a  much  reduced   rate   (Newbold   et   al.,   1989,   Williams   and   Coleman,   1997).   Contrarily   to   the   fast   substrate  conversion,  the  protozoal  fermentation  leads  to  a  steady  production  rate  of   SCFA  (Michałowski,  1987)  and  therefore  enhances  ruminal  pH  stability  (Newbold  et   al.,   2015).   A   slow   increase   of   the   concentrate   ratio   in   the   feed   allows   the   ciliate   population  to  adapt  to  the  enhanced  number  of  fermentable  substrates,  without  being   overgrown   by   the   bacterial   community   (Nagaraja   et   al.,   1986,   Nagaraja   and   Titgemeyer,   2007).   The   role   of   protozoa   regarding   the   fermentation   patterns   and   interactions  between  archaea  and  fungi  is  still  a  topic  of  interest.    

Like  the  protozoan  community,  the  fungal  group  belongs  to  the  slow  growing  microbes   in   the   rumen   and   is   of   significant   importance   in   cellulose   degradation.   Fungi   are   dependent  on  a  gradual  breakdown  of  substrates  and  a  long  ruminal  retention  time  to   be  able  to  contribute  productively  to  the  rumen  digestion  (McAllister  et  al.,  1994).  The   ruminal  fungi  are  able  to  attach  to  the  intact  surface  of  feed  particles  by  destroying  the   outer   protection   barrier   with   hypha,   contrarily   to   the   bacterial   fraction,   which   is   dependent  on  damages  and  porous  structures  in  order  to  bind  to  particles.  Therefore,  

(15)

fungi  contribute  significantly  to  the  attachment  of  bacteria  on  feed  particles  and  assist   in  the  bacterial  colonization  of  fiber  (Lee  et  al.,  2000).  The  abundance  of  fungi  within   the  rumen  is  determined  by  the  roughage  ratio  (Gruninger  et  al.,  2014).    

The  bacterial  community  is  by  far  the  most  diverse  group  within  the  ruminal  flora.  This   group   can   be   subdivided   into   three   major   parts.   Firstly,   there   are   liquid   associated   microorganisms,  which  can  be  found  mainly  in  the  fluid  fraction  of  the  ruminal  content.  

Secondly,   a   major   group   is   associated   with   the   solid   phase,   where   bacteria   are   attached   to   feed   particles.   Within   the   solid   associated   microorganisms   one   fraction   attaches   tighter   to   particles   as   other   bacteria.   Loosely   attached   bacteria   can   be   removed   by   gentle   washing,   whereas   the   firmly   attached   bacteria   remain   on   the   particle’s  surface  (McAllister  et  al.,  1994).  Thirdly,  a  smaller  group  of  epimural  bacteria   bonds  to  the  rumen  wall  (Cheng  et  al.,  1979,  Sadet  et  al.,  2007).  This  last  group  forms   the   smallest   part   of   the   bacterial   biomass   (Sadet   et   al.,   2007).   Sadet   et   al.   (2007)   analyzed  the  epimural  community  of  lambs  and  the  impact  of  feed  alterations  on  the   diversity  on  this  specific  bacterial  group.  The  authors  could  not  determine  any  feed   associated  influences;;  however,  the  individual  animal  had  great  impact  on  the  diversity   of  the  epimural  flora.  The  individual  alterations  are  said  to  be  due  to  the  co-­dependent   multifactorial  relationship  between  the  host  animal  and  the  epimural  community.  Chen   et   al.   (2011)   confirmed   the   individual   influence;;   however,   authors   did   also   imply   an   impact   of   feed.   Reasons   for   the   variation   among   studies   remain   under   discussion.  

Epimural   bacteria   are   less   involved   in   the   fermentation   of   SCFA,   but   have   major   importance   to   maintain   the   ruminal   anaerobic   conditions,   as   they   are   able   to   bind   oxygen.  Furthermore,  the  epimural  flora  is  involved  in  urea  metabolism  and  digests   devitalized  epithelial  cells  (Cheng  et  al.,  1979).    

(16)

For   degradation   of   structural   plant   material,   it   is   obligatory   for   the   microbial   flora   to   attach   to   feed   particles.   Therefore,   bacteria   have   to   overcome   certain   protective   barriers.   Layers   of   cuticle,   which   may   contain   up   to   24%   silica,   protect   grains   and   forages.   The   cuticle   surface   enhances   the   rigidity   and   impedes   digestion.  

Nevertheless,  bacteria  penetrate  this  surface  via  stoma,  lenticels,  or  damaged  areas   and  start  to  colonize  and  digest  from  the  inside  out  (Cheng  et  al.,  1991,  McAllister  et   al.,   1994).   This   is   initially   done   by   primary   colonizers   of   the   liquid   associated   flora.  

Using  binding  proteins  and  glycocalices,  these  microorganisms  attach  to  the  particle   surface   and   enzymatically   degrade   insoluble   substrates.   After   fermentation,   soluble   nutrients  are  released  into  the  liquid  fraction.  In  a  second  step,  the  solid  associated   bacteria  are  able  to  attach  to  the  gylcocalicae  of  the  primary  colonizers  (McAllister  et   al.,   1994).   This   attachment   forms   a   biofilm,   which   protects   the   particle   associated   microflora   from   antibacterial   substances   and   potential   predators,   like   protozoa   (Newbold  et  al.,  1989,  McAllister  et  al.,  1994).  Within  this  microclimate,  electrons  and   nutrients  can  be  transported  safely  and  finally  degradation  products  like  SCFA  can  be   released   into   the   rumen.   When   the   cellular   walls   of   the   feed   particles   have   been   completely  degraded,  bacteria  attach  to  the  next  feed  particle.  Non-­  or  partly  digested   particles  are  eventually  transported  further  down  the  digestive  system  (McAllister  et   al.,  1994).  The  particle  associated  bacterial  population  is  estimated  to  account  for  70   –  80%  of  the  bacterial  mass  (Craig  et  al.,  1987,  McAllister  et  al.,  1994).  The  primary   studied  cellulolytic  bacteria  are  Fibrobacter  succinogenes,  Ruminococcus  flavefaciens   and  Ruminococcus  albus  (Weimer,  1992,  McAllister  et  al.,  1994,  Weimer,  1996,  Oss   et  al.,  2016).  The  mean  retention  time  of  feed  particles  in  the  solid  phase  is  higher   compared  to  the  fluid  fraction.  Furthermore,  the  enzymatic  activity  is  significantly  higher  

(17)

in  the  solid  phase  (McAllister  et  al.,  1994).  The  enzymatic  activity  in  cell  free  fluid  rumen   samples  is  reported  to  decrease  rapidly,  which  indicates  a  fast  inactivation  of  enzymes   produced  by  fluid  associated  bacteria.  This  observation  leads  to  the  presumption,  that   the   solid   associated   bacteria   are   responsible   for   the   major   part   of   feed   digestion   (McAllister  et  al.,  1994).  The  microbial  degradation  of  carbohydrates  mainly  results  in   the   production   of   SCFA,   of   which   acetate,   propionate,   and   butyrate   are   of   major   importance  to  the  animal.  The  majority  of  the  SCFA  are  absorbed  through  the  rumen   wall,  but  also  in  the  further  digestive  tract.    

The  ruminant  uses  acetate  and  butyrate  primarily  as  an  energy  source,  resulting  from   oxidation   via   the   citric   acid   cycle   (France   and   Dijkstra,   2005).   Acetate   is   the   main   source  for  lipogenesis,  which  is  reflected  in  the  milk  fat  production  in  the  mammary   gland   (Weimer   et   al.,   2010,   Weimer   et   al.,   2017).   Butyrate   also   promotes   ruminal   epithelial  cell  proliferation  (Sakata  and  Tamate,  1978).  As  the  net  glucose  uptake  in   the   rumen   and   intestinal   tract   is   relatively   low   in   ruminants   (Roe   et   al.,   1966),   propionate  is  a  major  source  for  glucose  production.  Propionate  is  absorbed  majorly   through   the   rumen   wall   and   contributes   significantly   to   gluconeogenesis   in   the   liver   (Bergman  et  al.,  1966).    

The  total  SCFA  concentration  in  the  rumen  varies  between  70  and  130  mM,  resulting   from  production  and  absorption  processes.  The  concentration  of  individual  SCFA  is   referred  to  as  the  fermentation  pattern  (France  and  Dijkstra,  2005).  The  composition   and  total  appearance  of  the  individual  SCFA  are  influenced  by  various  factors,  such   as  the  source  of  carbohydrates,  pretreatment  of  feed  and  feeding  portions  (Strobel  and   Russell,  1986,  Lettat  et  al.,  2010).  Feeding  high  roughage  rations  generally  results  in   a  high  production  of  acetate,  whereas  high  starch  ratios  lead  to  an  increased  propionic  

(18)

acid  production  (Sutton  et  al.,  2003).  Butyrate  production  is  commonly  favored  by  the   fermentation   of   soluble   carbohydrates   (Enemark   et   al.,   2002,   Weiss   et   al.,   2017).  

Feeding   a   high   forage-­ration,   the   acetate:propionate:butyrate   ratio   generally   ranges   around  70:20:10  (France  and  Dijkstra,  2005).  Under  physiological  feeding  conditions,   the  rumen  pH  varies  between  7.1  and  6.0  (Shi  and  Weimer,  1992).  After  feed  intake   SCFA  accumulate  in  the  rumen  and  reduce  the  pH  for  several  hours  (Allen,  1997,  Soto-­

Navarro  et  al.,  2000b).  Shifts  of  0.1  to  1.0  pH  units  within  a  24  h  period  are  common   (Oetzel,   2007).   To   encounter   the   decreasing   ruminal   pH,   acids   are   then   mainly   absorbed  through  the  rumen  wall  or  transported  further  along  the  gastrointestinal  tract.  

Furthermore,  ruminal  buffer  mechanisms  neutralize  accumulating  acids  to  maintain  the   physiological  pH  range.  The  epithelial  cells  provide  three  main  mechanisms  to  maintain   the   ruminal   milieu   and   to   protect   the   intracellular   pH   from   decreasing.   The   ruminal   mucosa  absorbs  both  forms  of  SCFA,  the  ionized  and  protonated  form  (Kramer  et  al.,   1996).  With  pKa  (the  pH  point  of  maximum  buffering)  values  of  4.8,  SCFA  are  largely   abundant  in  the  dissociated  form  in  the  rumen.  Based  on  the  Henderson-­Hasselbalch   equation,   the   appearance   of   dissociated   and   undissociated   acids   is   based   on   an   equilibrium   reaction.   A   decreasing   rumen   pH   is   associated   with   an   enhanced   proportion  of  undissociated  SCFA  and  equally  increases  the  rate  of  diffusion  (France   and  Dijkstra,  2005).  The  passive  absorption  is  a  very  fast  process,  which  is  beneficial   when  a  high  amount  of  SCFA  accumulate  in  the  rumen  after  feed  intake  (Kramer  et   al.,  1996).  The  ruminal  wall  provides  two  apical  transport  mechanisms  for  enhancing   SCFA   absorption   and   protecting   the   ruminal   and   intracellular   pH   milieu:   a   Na+/H+   exchanger  and  a  bicarbonate  importing  system  (Schweigel  et  al.,  2000).  In  pH  ranges   above  pH  6.0,  SCFA  are  mainly  present  in  their  ionized  form,  due  to  their  pKa  of  4.8.  

(19)

Located  on  the  luminal  side  of  the  epithelium,  Na+/H+-­exchanger  release  one  H+  into   the  rumen  in  exchange  for  one  Na+  ion,  which  is  transported  into  the  cell.  The  free   protons  create  a  microclimate  around  the  rumen  wall  and  convert  ionized  SCFA  into   the  undissociated  form.  Protonated  SCFA  are  then  passively  absorbed  by  the  rumen   epithelium.  Due  to  the  electrical  gradient,  the  uptake  of  ionized  SCFA  is  accompanied   with  either  anion  secretion  or  cation  absorption.  Bicarbonate  secretion  is  the  driving   force  for  the  SCFA  uptake.  Within  the  ruminal  epithelium  bicarbonate  is  converted  from   carbon   dioxide   by   the   carbonic   anhydrase.   Therefore,   the   ruminal   epithelia   cells   provide  bicarbonate  for  a  second  transport  mechanism,  which  releases  HCO3  into  the   rumen   in   exchange   of   dissociated   SCFA   (Gäbel   et   al.,   2002,   Dijkstra   et   al.,   2012).  

HCO3  is  one  of  the  most  effective  buffers  in  the  rumen.  With  a  ruminal  concentration   of   approximately   120   mM,   HCO3   neutralizes   up   to   50   –   60%   of   the   ruminal   accumulated  acids  (Dijkstra  et  al.,  2012).  Bicarbonate  is  able  to  neutralize  H+  protons,   by  binding  and  transformation  into  carbonic  acid.  The  carbon  acid  dissociates  to  CO2   and  H2O,  of  which  CO2  escapes  the  forestomach  by  ruminal  eructation.    

The  chain  length  of  the  individual  SCFA  has  an  impact  on  resorption  and  due  to  this   the  absorption  of  the  three  main  SCFA  increases  in  the  order  acetate  <  propionate  <  

butyrate  (Gäbel  et  al.,  1991).  A  slow  increase  of  easily  fermentable  carbohydrates,  and   therefore  a  stepwise  increase  of  acids  in  the  rumen  leads  to  a  proliferation  of  rumen   epithelia  cells,  increases  the  growth  of  ruminal  papillae  and  enhances  the  blood  supply.  

These  morphological  processes  improve  the  actual  resorption  capacity  and  may  lead   to   an   up   to   four-­fold   increase   of   the   net   absorption/disappearance   rate   of   SCFA   (Dirksen  et  al.,  1984).  Dirksen  et  al.  (1984)  implied  an  adaptation  time  of  at  least  four  

(20)

weeks  for  the  optimal  adjustment  of  the  ruminal  mucosa  to  an  enhanced  concentrate   ration.  

Additionally  to  the  buffering  mechanisms  inside  the  forestomach,  the  ruminant’s  saliva   contributes   significantly   to   the   pH   maintenance,   as   it   is   very   rich   in   HCO3   and   phosphate  (McDougall,   1948).  Up   to   half   of   the   ruminal   bicarbonate   is   derived   from   saliva   (Owens   et   al.,   1998b).   The   phosphate   buffering   function   differs   from   bicarbonate,  as  phosphate  is  only  removed  by  further  passage.  At  pH  6.0  more  than   94%  of  the  phosphate  is  complexed  as  dihydrogen  phosphate  and  leaves  the  rumen   in   the   liquid   phase   (Allen   et   al.,   2006).   Saliva   has   a   pH   of   about   8.4   and   is   a   very   effective  buffer  for  pH  values  lower  than  pH  6.0  (McDougall,  1948).  Many  studies  claim   that  a  high  structural  roughage  feeding  increases  the  chewing  time  and  simultaneously   enhances   the   buffer   capacity   in   the   rumen   (Beauchemin,   1991,   Allen,   1997,   Beauchemin  et  al.,  2003).  However,  the  impact  of  feed  structure  on  the  pH  regulation   is  discussed  controversially.  Jiang  et  al.  (2017)  observed  an  increased  production  of   saliva  when  animals  were  fed  with  roughage,  however,  the  daily  total  amount  of  saliva   did  not  significantly  increase.  The  authors  conclude  that  the  amount  of  structure  within   the  ration  has  no  direct  impact  on  the  total  saliva  production  and  therefore,  it  has  no   impact   on   the   ruminal   pH   development.   Maekawa   et   al.   (2002b)   supported   this   statement,  and  reported  a  decreasing  saliva  production  in  between  chewing  time  and   rumination  period.    

 

1.2   Rumen  acidosis  

Forages   and   concentrates   differ   in   their   proportion   of   structural   and   non-­structural   carbohydrates,  nitrogenous  substances  and  lipids  (Pitta  et  al.,  2018).  A  simple  forage  

(21)

diet  can  meet  all  the  animal’s  nutritional  needs,  however,  when  it  comes  to  productivity   and  milk  yield,  an  energy  supplementation  in  form  of  concentrate  feeding  is  needed   (Hills   et   al.,   2015).   A   highly   energized   diet,   which   is   rich   in   easily   fermentable   carbohydrates  but  lacks  fiber  and  structure,  leads  to  an  enhanced  production  of  SCFA   in  the  forestomach  (Beauchemin,  2007).  When  these  acids  accumulate  in  the  rumen   and  the  balance  between  neutralization  and  acid  production  is  out  of  equilibrium,  the   imbalance  leads  to  a  reduction  of  the  ruminal  pH  below  physiological  thresholds  (Ash   and  Dobson,  1963).  Allen  (1997)  reports  a  very  sensitive  reaction  of  pH  to  feed  intake.  

The  reduction  of  ruminal  pH  below  critical  thresholds  over  a  certain  time  period  (Penner   et  al.,  2007,  Khafipour  et  al.,  2009b)  is  referred  to  as  rumen  acidosis.  An  increased   presence   of   protons   during   acidosis   overstrains   the   resorption   capacity   of   the   epithelium   and   cannot   be   eliminated.   This   leads   to   functional   alterations   within   the   epithelium  (Liu  et  al.,  2013,  Schwaiger  et  al.,  2013b).  

Ruminal  acidosis  may  appear  in  an  acute  and  a  subacute  form.  Acute  rumen  acidosis   (ARA)  describes  a  fermentative  dysfunction,  where  the  ruminal  pH  decreases  below   pH  5.2  (Penner  et  al.,  2007)  or  <  pH  5.0  (Enemark  et  al.,  2002).  The  low  pH  values   favor  the  growth  and  activity  of  lactate-­producing  microorganisms,  which  leads  to  an   increasing  ruminal  lactate  concentration.  In  pH  ranges  above  pH  5.5,  lactate  does  not   accumulate  in  the  rumen  (Slyter,  1976)  as  the  production  is  modulated  by  the  activity   of   lactate   utilizing   bacteria,   e.g.  Megasphera   elsdenii   and   others   (Arik   et   al.,   2019).  

These  bacteria  use  lactate  to  produce  SCFA,  however,  their  growth  and  activity  are   impaired  below  pH  5.0  (Arik  et  al.,  2019).  Therefore,  a  subacute  rumen  acidosis  may   lead   to   a   severe   lactic   acidosis   (Nagaraja   and   Titgemeyer,   2007).   The   enhanced   lactate  production  consequently  supports  a  decreasing  pH  trend  (Owens  et  al.,  1998),  

(22)

as   it’s   pKa   is   significantly   lower   than   SCFA   (3.8   vs.   4.8,   respectively).   The   clinical   appearance  of  the  acute  acidosis  can  be  dramatic.  Severe  acidosis  leads  to  a  rapid   deterioration  of  the  general  condition.  While  anorexia  and  a  decreasing  milk  production   are  signs  of  a  mild  form  of  ARA,  a  severe  outbreak  can  induce  recumbency,  coma  and   finally  death  within  8  to  10  h  (Bramley  et  al.,  2005).  

In   contrast,   during   a   subacute   rumen   acidosis   (SARA)   the   decrease   in   rumen   pH   appears  less  severe.  Some  authors  define  SARA  as  a  decrease  between  pH  5.5  to  5.0   (Enemark   et   al.,   2002)   or   between   pH   5.6   and   5.2   (Cooper   et   al.,   1998).   However,   under   physiological   feeding   conditions,   the   ruminal   pH   decreases   for   several   hours   postprandial  until  the  accumulated  SCFA  are  absorbed  and  neutralized  (Beauchemin,   2007,   Dijkstra   et   al.,   2012).   Therefore,   the   time   spent   below   certain   thresholds   has   been  used  to  identify  SARA.  Zebeli  et  al.  (2008)  define  SARA  as  a  time  of  more  than   300  min  below  pH  5.8,  whereas  Khafipour  et  al.  (2009a)  use  the  threshold  of  5.6  for   more  than  180  min.  Contrarily  to  ARA,  the  lactate  concentration  in  the  rumen  remains   low  in  subacute  acidosis.  This  is  either  due  to  the  enhanced  lactate  utilization  (Long  et   al.,   2014)   or   results   from   a   reduced   growth   and   abundance   of   lactate   producing   bacteria,   compared   to   ARA   (Krause   and   Oetzel,   2005).   Mostly,   SARA   occurs   individually   and   recurrent   over   a   longer   period.   Signs   may   be   laminitis,   diarrhea,   a   decreasing  milk  production  and  a  reduced  feed  intake  (Nocek,  1997,  Enemark  et  al.,   2002,   Kleen   et   al.,   2003).   Repetitive   acidotic   bouts   irritate   the   rumen   mucosa   and   increase   the   susceptibility   for   mucosal   damages   and   dysfunctions.   Consequently,   parakeratosis  and  ruminitis  can  occur  (Krehbiel  et  al.,  1995,  Kleen  et  al.,  2003).  Gram-­

negative  bacteria  are  very  sensitive  towards  lower  pH  values.  Cellular  death  and  cell   lysis  of  these  bacteria  release  membranous  lipopolysaccharides,  which  cause  further  

(23)

damage  to  the  integrity  of  the  ruminal  epithelium  (Mao  et  al.,  2013).  These  defects  lead   to  an  impaired  SCFA  uptake,  and  mucosal  lesions  may  provide  entry  for  pathogens,   like  Fusobacterium  necrophorum  or  Trueperella  pyogenes.  The  ruminitis  liver  abscess   complex  and  laminitis  are  common  pathological  sequelae  (Nocek,  1997,  Svensson  and   Bergsten,  1997).  Nevertheless,  in  contrast  to  the  acute  rumen  acidosis  obvious  clinical   signs   of   SARA   are   generally   missing   or   harder   to   detect   (Cooper   et   al.,   1998).  

Subsequently,  the  number  of  subclinically  affected  animals  remains  high.  Moreover,   the  concomitant  diseases  and  the  reduced  productivity  are  of  major  economic  concern   for  the  farmer.  In  Germany  and  the  Netherlands,  approximately  11%  of  the  early  and   18%  of  the  mid  lactating  animals  are  affected  by  SARA  (Kleen  et  al.,  2004).  In  a  recent   study,  Stefańska  et  al.  (2016)  analyzed  the  prevalence  of  SARA  in  213  polish  dairy   herds.  In  more  than  44%  of  the  herds  more  than  25%  of  the  animals  suffered  from   SARA.    

 

1.3   Bacterial  alterations  during  subacute  rumen  acidosis  

In  order  to  be  able  to  colonize  feed  particles,  cellulolytic  bacteria  need  to  attach  to  the   surface.   Under   low   pH   values,   the   growth   and   binding   ability   of   many   cellulolytic   bacteria  is  impaired  (Russell  et  al.,  2009).  Low  intracellular  pH  values  restrict  bacterial   growth   and   fermentation   processes.   Therefore,   the   pH   value   affects   cellulolytic   degradation  of  feed  material  by  restricting  enzymatic  activity  and  inhibiting  growth  and   binding  capacity  of  the  bacteria  (Russell  and  Wilson,  1996,  Russell  et  al.,  2009).  Roger   et   al.   (1990)   reported   the   largest   number   of   adherent   cells   for   the   cellulolytic   Fibrobacter  succinogenes  between  pH  5.5  and  7.0,  concluding  that  enzymatic  inducted   binding  activity  of  F.  succinogenes  is  greatest  in  those  pH  ranges.  Furthermore,  the  

(24)

pH  may  also  affect  the  electrostatic  interactions  between  surfaces.  However,  not  all   cellulolytic  bacteria  are  unable  to  attach  in  low  pH  values.  There  are  many  different   mechanisms   of   attachment   and   complex   enzymes   like   cellulosomes   of   anaerobic   bacteria  and  fungi  (Aurilia  et  al.,  2000)  affecting  cellulose  degradation  (Schülein,  2000).  

Contrarily   to  F.   succinogenes,   the   adhesion   of  Ruminococcus   flavefaciens   and  R.  

albus   is   not   impaired   by   lowered   pH   (Rasmussen   et   al.,   1989,   Roger   et   al.,   1990).  

Nevertheless,   cellulolytic   activity   can   still   be   observed   below   a   ruminal   pH   6.0,   however,  at  a  much  reduced  rate  (Hiltner  and  Dehority,  1983).  Cellulolytic  bacteria  can   provide   cellodextrins   to   more   acid   resistant   noncellulolytic   bacteria   (Russell   and   Dombrowski,  1980b,  Mouriño  et  al.,  2001).  Studies  imply  that  cellulolytic  bacteria  do   not   lose   the   ability   to   digest   cellulose   below   pH   6.0,   however,   growth   rate   is   highly   impaired  (Slyter,  1986,  Mouriño  et  al.,  2001).  The  ruminal  pH  needs  to  remain  above   pH  6.0  to  support  bacterial  growth  in  order  to  maintain  cellulose  digestion.  Terminating   pH  values  are  below  5.3  (Mouriño  et  al.,  2001).  The  ability  to  digest  cellulose  below  pH   6.0  is  of  some  significance,  as  rumen  pH  values  in  modern  dairy  and  beef  production   remain   in   these   pH   ranges   for   a   significant   amount   of   time   during   feeding   cycles   (Russell  et  al.,  2009).  Nevertheless,  some  anaerobic  microorganisms  are  able  to  grow   in  acidotic  environments  (Weimer,  1992).  They  are  able  to  create  a  low  pH  gradient  by   decreasing   the   intracellular   pH   value   accordingly   to   the   outer   pH   reduction.   This   prevents  from  SCFA  accumulation.  The  bacterial  strategy  to  reduce  the  intracellular   pH  can  only  be  beneficial,  if  enzymes  are  tolerant  to  low  pH  values  and  this  does  not   impair  the  intracellular  metabolism.  One  of  these  pH  resistant  bacteria  is  Streptococcus   bovis.   In   low   pH   environments,   the   intracellular   pH   decreases,   however,   acetate,   formate  and  ethanol  are  then  no  longer  produced  by  S.  bovis.  Instead,  the  fermentation  

(25)

pattern   shifts   to   homolactic   production,   indicating   that   intracellular   enzymes   are   affected  by  low  pH  and  determine  the  fermentation  outcome  (Russell  and  Hino,  1985).    

In   vivo,   the   adaptation   to   an   intense   concentrate   feeding   scheme,   resulting   in   decreased   ruminal   pH   values,   leads   to   a   shift   in   the   microbial   population.   After   an   increase  of  lactic  acid-­producing  bacteria,  the  abundance  of  lactate  utilizing  bacteria   increases   as   the   rumen   adapts   to   high   concentrate   rations   (Tajima   et   al.,   2000).  

Generally   during   SARA,   the   ruminal   lactate   concentration   does   not   exceed   5   mM   (Owens  et  al.,  1998b).  Sun  et  al.  (2010)  increased  the  concentrate  ratio  over  a  period   of  45  d  and  reported  a  gradual  change  in  fermentation  patterns,  microbial  diversity  and   abundance.  Authors  reported  a  proliferation  of  associated  bacteria  according  to  the   increasing  concentrate  ratio  and  a  general  increase  of  propionate  during  the  trial.  In   their  study,  butyrate  producing  bacteria  proliferated  until  they  disappeared  when  50%  

concentrate   was   fed,   which   was   also   reflected   in   the   fermentation   pattern.   When   feeding   a   70%   concentrate   ratio   most   fibrolytic-­related   species   disappeared,   while   starch  fermenting  and  acid  tolerant  bacteria  like  S.  bovis  and  Prevotella  spp.  persisted.  

The  decrease  of  high  abundant  and  diverse  cellulolytic  species  during  the  shift  from   high-­forage  to  high-­concentrate  rations  is  also  reported  in  several  other  in  vivo  studies   (Weimer   et   al.,   1999,   Yang   et   al.,   2001).   Generally,   the   phyla   Firmicutes   and   Bacteroidetes  are  reported  to  be  the  main  phyla  within  the  rumen  (Petri  et  al.,  2013).  

During  rumen  acidosis,  observations  regarding  the  bacterial  alterations  vary.  Several   studies  report  an  increase  of  the  relative  abundance  of  the  phylum  Firmicutes,  when   SARA  was  induced  by  excessive  grain  feed  (Fernando  et  al.,  2010,  Mao  et  al.,  2013,   Plaizier  et  al.,  2017).  Mao  et  al.  (2013)  concluded  that  the  increase  of  this  phylum  is   due   to   an   increase   in   bacterial   species,   which   are   able   to   cope   with   an   elevated  

(26)

availability  of  carbohydrates.  Contrarily,  Watanabe  et  al.  (2019)  reported  a  decreasing   abundance  of  Firmicutes  during  acidosis,  while  Bacteroidetes  tended  to  increase  in   low  pH  values.  In  contrast,  in  other  studies  Bacteroidetes  is  often  found  to  diminish   during  low  rumen  pH  values,  as  most  bacterial  species  belonging  to  Bacteroidetes  are   Gram-­negative  and  are  sensitive  to  low  pH  values  (Khafipour  et  al.,  2009c,  Huo  et  al.,   2014).  The  discrepancy  in  the  bacterial  distribution  may  result  from  individual  reaction   to  SARA  induction  (Mohammed  et  al.,  2012)  and  different  alterations  within  the  main   phyla,  due  to  different  feed  rations  (Duarte  et  al.,  2017,  Arik  et  al.,  2019).  The  phylum   Fibrobacteres  and  the  family  Ruminococaceae  are  predominantly  cellulolytic  and  their   abundance  is  enhanced  in  fiber  rich  diets  (Roger  et  al.,  1990).  During  concentrate  rich   feeding   schemes   with   low   rumen   pH   values,   the   abundance   of  Bacteroidetes   is   diminished,   while   Bifidobacteriaceae   and   certain   species   of   Prevotellaceae   are   increased  (Mao  et  al.,  2013).  Therefore,  it  is  desirable  to  aim  for  a  high  phylogenetic   resolution  when  analyzing  the  bacterial  diversity  within  the  rumen.  

 

1.4   In  vivo  models  for  subacute  rumen  acidosis  

Subacute  rumen  acidosis  does  not  only  affect  the  fermentation  pattern,  but  has  also  a   substantial  impact  on  animal  welfare  (Abdela,  2016)  and  economic  consequences  for   the  farmer.  Therefore,  rumen  acidosis  has  been  a  major  topic  of  scientific  research  in   the   past   years   and   will   continuously   be   studied   as   knowledge   within   the   field   progresses.  Many  in  vivo  studies  have  been  performed  in  the  past  decades.  However,   the  protocol  for  SARA  induction  varies  between  studies.  In  several  studies,  the  basic   feed  is  replaced  by  a  sudden  increase  of  concentrate  in  the  ration  (Keunen  et  al.,  2002,   Krause  and  Oetzel,  2005,  Vyas  et  al.,  2015).  To  ensure  a  proper  intake  of  the  SARA-­

(27)

ration,   the   animals   are   often   restrictively   fed   the   day   before   SARA   induction.   Most   studies  use  wheat  or  barley  pellets,  or  a  mixture  of  both  to  reduce  the  ruminal  pH  below   5.6  (Krause  and  Oetzel,  2005),  below  6.0  and  5.6  (Keunen  et  al.,  2002),  or  below  5.8   (Vyas  et  al.,  2015),  respectively.  Furthermore,  it  is  possible  to  force  feed  animals  within   a  certain  time,  creating  a  mean  pH  of  5.59,  as  performed  in  the  study  of  Schlau  et  al.  

(2012).   A   third   option   is   to   use   ruminally   cannulated   animals   and   to   apply   a   high   amount   of   grains   directly   into   the   rumen   (Lettat   et   al.,   2010,   Kmicikewycz   and   Heinrichs,  2014).  These  studies  report  a  mean  SARA  pH  of  4.85  to  6.09,  and  pH  5.72   to   5.51,   respectively.   However,   recently,   most   studies   induce   SARA   by   simply   increasing   the   concentrate   proportion   within   the   daily   ration   (Metzler-­Zebeli   et   al.,   2013,  Plaizier  et  al.,  2017,  Arik  et  al.,  2019),  resulting  in  pH  values  below  pH  5.6.  

To  measure  the  ruminal  pH  development,  especially  indwelling  24  h-­pH  sensors  are   commonly   used   in  in   vivo   studies   with   non-­cannulated   cows   (Nocek   et   al.,   2002).  

Furthermore,  besides  a  permanently  cannulation  of  animals,  there  are  currently  two   methods   available   for   ruminal   sampling  in   vivo.   Firstly,   an   oral   stomach   tube,   and   secondly  rumenocentesis  providing  access  to  the  rumen.  In  an  in  vivo  study,  Duffield   et  al.  (2004)  compared  both  methods  to  a  24  h-­continuous  rumen  pH  measurement   with  indwelling  pH  sensors  in  ruminal  cannulated  cows.  The  study  implied  that  results   differ   among   sampling   procedures.   The   most   sensitive   technique   was   the   rumenocentesis  method.  The  oral  stomach  tube  revealed  higher  pH  values  and  higher   bicarbonate  concentrations,  compared  to  samples  collected  by  rumenocentesis.    

However,  great  expense  and  ancillary  costs  for  in  vivo  studies  limit  these  experiments   to  a  small  number  of  animals.  A  great  advantage  of  fistulated  animals  is  the  precise   localization  of  the  sampling,  which  cannot  be  accomplished  by  an  oral  stomach  tube  

(28)

(Weimer,  2015).  Mohammed  et  al.  (2012)  implied  that  the  individual  response  to  SARA   induction   protocols   varies   significantly   among   animals,   which   means   that   a   greater   number  of  animals  would  be  statistically  desirable.  Furthermore,  the  impact  on  animal   welfare  needs  to  be  considered.  To  overcome  these  problems,  in  vitro  models  have   been  established  to  observe  rumen  fermentation  and  microbial  diversity.    

 

1.5   In  vitro  models  for  subacute  rumen  acidosis  

The  analysis  of  rumen  fermentation  is  rather  difficult  in  vivo.  Therefore,  several  in  vitro   models  have  been  developed  to  observe  the  rumen  fermentation  process  in  controlled   laboratory  surroundings,  aiming  to  mimic  in  vivo  conditions.  The  in  vitro  models  can  be   divided   in   two   major   groups,   batch   culture   systems   (Hoover   et   al.,   1976)   and   continuous  culture  models  (Czerkawski  and  Breckenridge,  1977).  The  systems  may   be   modified,   depending   on   the   aim   of   the   study.   Isolated   microorganisms   can   be   observed  (Chen  et  al.,  2019)  as  well  as  complex  microbial  interactions  (Strobel  et  al.,   2007).   Batch   culture   fermentation   systems   are   the   most   frequently   used  in   vitro   methods  to  observe  ruminal  fermentation  processes  (Broudiscou  and  Lassalas,  2000)   and  specific  microbial  interactions  (Vries  et  al.,  1970,  Chen  et  al.,  2019).  Anele  et  al.  

(2015)  evaluated  models  for  acidosis  prediction  using  batch  culture  models.  By  diluting   the  buffer  solution,  pH  decreased  below  5.2.  The  batch  culture  model  allows  a  large   number   of   samples   within   one   run,   and   benefits   from   a   space   saving   setup.   Using   batch  culture  systems,  liquid  rumen  content  and  buffer  solutions  are  incubated  in  gas   tight   glass   flasks.   Fermentation   gasses   escape   into   attached   syringes.   The   temperature  is  maintained  by  a  heating  system  and  the  pH  is  regulated  by  applying   HCl  and  NaOH  solutions.  After  a  certain  time  a  lack  of  substrate  and  the  accumulation  

(29)

of   microbial   waste   products   limit   the   growth   and   activity   rate   (France   and   Dijkstra,   2005).  

Using   continuous   flow   models,   the   negative   effects   of   the   unchanged   milieu   is   encountered   by   a   continuous   removal   of   waste   products   and   a   steady   supply   of   substrates.   This   enhances   the   establishment   of   a   steady   state   within   the   microbial   community  and  the  model  can  be  used  for  several  days  (Busquet  et  al.,  2005)  extended   to   weeks   (Fraser   et   al.,   2007).   Continuous   flow   models   reflect   the  in   vivo   situation   closer  compared  to  batch  culture  approaches  (Stern  et  al.,  1997).  In  these  models,   rumen  liquid  and  solid  content  is  continuously  diluted  with  a  buffer  solution.  The  effluent   is  either  pumped  out  or  allowed  to  overflow  (France  and  Dijkstra,  2005).  The  pH  is   maintained  by  using  HCl  and  NaOH  solutions  (Mansfield  et  al.,  1995,  Fuentes  et  al.,   2009).   Several   studies   use   a   modified   dual-­flow   system   (Calsamiglia   et   al.,   2002,   Cerrato-­Sánchez   et   al.,   2007),   which   was   originally   established   by   Hoover   (1976).  

Briefly,   in   these   set   ups,   flow   rates   of   the   buffer   solution,   and   the   liquid   and   solid   components  can  be  adjusted.  The  solid  and  liquid  components  are  allowed  to  stratify   within  the  vessels,  providing  different  liquid  and  solid  flow  rates  (Teather  and  Sauer,   1988).  Generally,  the  duration  of  these  studies  vary  from  hours  (Long  et  al.,  2014)  to   days  (Lourenço  et  al.,  2008).  

This  thesis  presents  an  in  vitro  experimental  trail  using  the  rumen  simulation  technique   (Rusitec),  established  by  Czerkawski  and  Breckenridge  (1977).  The  Rusitec  provides   a  single-­flow  semi-­continuous  culture  approach.  Contrarily  to  the  dual-­flow,  the  buffer   solution  and  the  effluent  flow  are  continuous,  and  the  pH  is  not  regulated  by  HCl  and   NaOH,   but   via   buffer   dilution   and   modifications.   Furthermore,   the   feed   ration   is   provided  only  once  a  day.  The  design  of  the  model  is  described  later  in  the  text  (3.2  

(30)

Experimental   set   up:   The   Rumen   Simulation   Technique).   One   of   the   first   SARA   inductions  in  a  Rusitec  model  was  described  by  Oliveira  et  al.  (1996),  who  observed   the   microbial   metabolism   of   thiamine   regarding   the   development   of   polioencephalomalacia   in   cattle.   In   this   study,   SARA   was   induced   by   lowering   the   amount  of  buffer  salts  in  the  buffer  solution,  resulting  in  a  pH  decrease  between  5.17   and  5.79  pH  units.  Recently,  Rusitec  studies  have  been  performed  by  Eger  et  al.  (2017)   and  Mickdam  et  al.  (2016),  observing  the  impact  on  microbial  populations  during  rumen   acidosis.  In  the  study  of  Eger  et  al.  (2017),  a  severe  rumen  acidosis  was  induced  by   lowering   the   buffering   substances   within   the   artificial   saliva,   resulting   in   pH   values   below   5.0   pH   units   and   a   decrease   in   the   microbial   community.   After   the   acidosis   challenge,  a  recovery  period  was  induced  by  infusing  the  standard  buffer  solution  and   authors  reported  a  regeneration  of  the  microbial  population  and  fermentation  products.  

Mickdam  et  al.  (2016)  induced  SARA  (pH  5.6–5.7)  in  a  Rusitec  model  and  evaluated   microbial  changes  during  acidosis  by  applying  a  PCR  analysis.  However,  the  analyses   did  not  include  a  regeneration  period  following  the  acidosis  challenge.    

In  this  thesis,  we  used  the  Rusitec  model  to  induce  a  subacute  rumen  acidosis  under   laboratory   conditions.   Firstly,   we   aimed   to   observe   the   changes   in   fermentation   patterns   during   acidosis   and,   innovatively,   after   acidotic   conditions   during   the   regeneration   period.   In   a   second   step,   the   bacterial   population   was   analyzed,   by   combining  two  next  generation  sequencing  approaches.  The  goal  was  to  observe  the   changes  within  the  ruminal  community  during  SARA  and,  furthermore,  to  monitor  the   ability  of  the  bacterial  community  to  recover  from  acidotic  challenges  in  the  Rusitec   system.    

(31)

2   Material  and  methods   2.1   Animals  

Two  ruminally  fistulated,  non-­lactating  Holstein  cows  were  used  in  this  experimental   set   up   to   collect   fresh   ruminal   inoculum   for   each   experimental   run.   The   previous   fistulation  was  approved  by  the  Lower  Saxony  State  Office  for  Consumer  Protection   and  Food  Safety  (LAVES)  by  the  experiment  number  AZ  33.4-­42505-­04-­13A373.  The   animals  were  kept  on  straw  and  fed  7.5  kg  of  hay,  and  500  g  of  a  rye  and  wheat  based   concentrate.  Solid  and  liquid  inoculum  was  collected  3  h  after  feeding.  

 

2.2   Experimental  set  up:  The  Rumen  Simulation  Technique  

The   rumen   simulation   technique   (Rusitec)   is   one   of   the   most   commonly   used   semi   continuous  culture  systems  for  rumen  fermentation  (Mateos  et  al.,  2017a),  originally   established  by  Czerkawski  and  Breckenridge  (1977).  The  Rusitec  model  consists  of   fermentation  vessels  in  which  ruminal  fermentation  processes  can  be  monitored  over   a  long  period  of  time.  Most  Rusitec  based  studies  last  several  days  or  even  weeks   (Mateos   et   al.,   2017a).   The   Rusitec   intends   to   simulate   the   rumen   function   and   therefore,   provides   compartments   for   two   fractions   of   microbes   –   liquid   associated   microorganisms,  and  solid  associated  microorganisms.  However,  a  compartment  for   the   epimural   associated   microorganisms   cannot   be   provided   by   the   Rusitec   model.  

This   experimental   trial   was   performed   using   two   Rusitec   models.   The   first   Rusitec   consists  of  six  identical  fermentation  vessels  (a)  made  of  polymethylmethacrylate  with   a  volume  of  approximately  750  ml.  The  second  only  contained  two  vessels,  which  were   contained   with   a   continuous   pH   measurement   device.   In   both   devices,   the   vessels   were   placed   in   a   water   bath   (b)   in   which   a   thermostat   (Thermomixer®,   Braun  

(32)

Melsungen  AG,  34209  Melsungen)  constantly  maintained  a  temperature  of  39°C,  to   mimic   body   temperature.   The   vessels   consisted   of   an   outer   vessel   and   an   inner,   movable  vessel.  The  outer  reaction  vessel  was  filled  with  fresh  liquid  rumen  content  at   the   start   of   each   experiment.   This   ruminal   fraction   contained   the   liquid   associated   microorganisms  (LAM).  The  inner  vessel  contained  two  nylon  bags  (c)  (16  cm  ×  7  cm,   porous  size  150  µm,  Linker  KG,  34127  Kassel),  which  provided  the  feed  ration.  At  the   beginning  of  the  trial,  one  nylon  bag  was  filled  with  solid  rumen  content  to  transfer  the   solid   associated   microorganisms   into   the   Rusitec   vessel.   On   the   following   day,   the   nylon   bag   containing   the   rumen   content   was   replaced   with   a   new   feed   bag.  

Henceforward,  every  day  feed  bags  were  exchanged  alternatingly,  ensuring  a  retention   time  for  each  bag  of  48  h.  To  transfer  the  microbial  fraction,  before  replacement,  the   feed  bag  was  flushed  with  pre-­warmed  buffer  solution  for  1  min.  The  solution  was  then   poured  back  into  the  open  fermentation  vessel.  The  lid  and  the  bottom  of  the  inner   vessel  were  perforated.  To  ensure  the  best  transfer  from  nutrients  and  microorganisms   into  both  fractions,  an  electric  motor  (d)  moved  the  inner  vessel  up  and  down  (6  rpm)   to  mimic  rumen  motility.  A  pump  (e)  (Typ  B1,  Ole  Dich,  Hvidore,  Dänemark)  constantly   infused   buffer   solution   (f)   into   the   fermentation   vessel   via   a   Tygon®   tube   (4.0  mm  ×  7.2  mm,  Omnilab  GmbH  &  Co.  KG,  30989  Gehrden),  ensuring  a  daily  liquid   turnover   rate   of   100%.   The   composition   of   the   buffer   solution   was   close   to   the   components  of  the  ruminant’s  saliva  and  therefore  maintained  a  physiological  pH  value   in  the  fermentation  vessels.  The  effluent  and  gasses  left  the  vessel  through  a  butyl   tube  (8.0  mm  ×  12.0  mm,  YMC  Europe  GmbH,  46539  Dinslaken).  The  effluent  was   continuously  collected  in  glass  bottles  (g),  which  were  stored  in  Styrofoam  boxes  (h)   and  cooled  on  ice  for  further  sampling.  Gasses  escaped  the  system  through  siphons  

(33)

on  top  of  the  effluent  bottles.  To  maintain  the  anaerobe  environment,  the  effluent  flasks   were  gassed  with  nitrogen  after  each  time  the  system  has  been  opened.    

       

   

Figure  1      The  Rusitec  model:  this  figure  shows  a  diagrammatic  model  of  the  Rumen   Simulation  Technique  applied  in  this  experimental  trial  

(34)

2.3   Experimental  design  and  sampling  scheme  

Each  experiment  consisted  of  an  equilibration  period  of  7  days,  a  first  control  period   (5  days,  CP  I),  the  acidosis  period  (5  days,  AP)  and  ended  after  the  regeneration  period   (control  period  II;;  CP  II)  of  5  days.    

During  the  equilibration  period,  the  pH  and  redox  potential  were  measured  once  per   day,  when  the  reaction  vessels  were  opened  for  the  daily  feed  bag  exchange.  During   CP  I,  AP,  and  CP  II  fluid  samples  were  collected  from  the  effluent  bottles  on  a  daily   basis  and  stored  at  -­20°C  until  further  treatment.  The  effluent  samples  were  used  to   analyze   lactate,   SCFA   and   ammonia-­N   concentrations.   To   monitor   the   degradation   process,  feedbags  were  collected  once  in  each  period.  On  these  sampling  days,  the   concentrate  ration  and  the  hay  ration  were  applied  in  two  separate  bags.  Therefore,   both   could   be   dried   and   weighted   and   the   individual   degradation   rate   could   be   calculated.  On  the  last  day  of  each  period,  additional  samples  of  the  fluid  and  solid   phase  were  collected  to  analyze  the  liquid  (LAM)  and  solid  associated  microbes  (SAM).    

 

   

Figure  2      Experimental  design  and  sampling  schedule  

(35)

2.4   Measurement  of  fermentation  parameters   2.4.1   pH  and  redox  potential  

The   pH   and   the   redox   potential   were   measured   once   daily,   after   opening   of   the   fermentation  vessel,  with  a  pH  meter  (Digital-­pH-­Meter  646,  Knick  GmbH  &  Co.  KG,   14163  Berlin)  and  pH  and  redox  sensors  (Polyplast  pH  Sensors  and  Polyplast  ORP   Sensors,  Hamilton  Bonaduz  AG,  Switzerland).  The  redox  potential  was  measured  for   60  s.  The  pH  sensor  was  calibrated  every  3  d  with  a  standardized  solution  of  pH  4.01   and   pH   7.00   (Mettler-­Toledo   GmbH,   35353   Gießen).   Two   of   the   eight   fermentation   vessels   were   equipped   with   a   continuous   computerized   measuring   device.   For   the   complete  experimental  run  of  22  d,  the  pH  and  redox  potential  was  measured  every   10   s.   The   average   was   protocoled   and   recorded   every   5   min   using   a   data   logging   program.    

 

2.4.2   Lactate    

Samples   for   lactate   concentration   were   collected   from   daily   effluent,   which   was   individually  measured  for  each  fermentation  vessel.  The  concentration  of  D-­  and  L-­

lactate   was   measured   using   a   commercial   kit   (Milchsäure   D-­Laktat/   L-­Laktat;;  

Boehringer  Mannheim/  R-­Biopharm,  Enzymatische  BioAnalytik  /  Lebensmittelanalytik;;  

Roche,   Mannheim,   Germany).   Preparatory,   the   samples   were   centrifuged   at   room   temperature  for  10  min  at  25830  g.  Then,  1  ml  of  the  supernatant  was  transferred  into   an  Eppendorf-­tube.  The  pH  of  the  sample  material  was  adjusted  to  pH  8  –  10  using  1   M  NaOH.  The  samples  were  kept  at  -­20°C  until  analysis.  After  defrosting,  the  samples   were  centrifuged  for  10  min  at  13000  g  until  they  were  treated  as  recommended  by  the   manufacturer’s  instructions.  The  determination  of  lactate  concentration  is  based  on  the  

Referenzen

ÄHNLICHE DOKUMENTE

Therefore, a recently established animal model that enables generating animal groups being in a ketogenic metabolic status by a specific combination of the factors high

This PhD thesis evaluates whether peripartal negative energy balance and the low postpartal glucose availability may alter the immune response of monocytes by

The problems of BCS have been discussed thoroughly in literature (EDMONSON et al. Scoring of body condition delivers exact information on condition and body fat partition

We hypothesized that the change from a confinement to a pasture based system involves complex nutritional and metabolic adaptations with consequences on health

Diet supplementation of heifers with rumen-protected fatty acids affected the lipid composition of biofluids (blood and oocyte microenviroment), SCAP expression and the

Effects of untreated and extruded linseed fed to dairy cows on rumen fermentation and plasma and milk fatty acid compositionF. Bee, Agroscope Liebefeld-Posieux, Swiss Federal

Chewing activity was not significantly correlated with fibre intake whereas the ruminating time was negatively correlated with the DM intake (r = -0.44; P = 0.07)..

Swiss Centre for International Agriculture Schweizerisches Zentrum für Internationale Landwirtschaft Centre Suisse pour l’Agriculture Internacional Swiss Centre for