• Keine Ergebnisse gefunden

JVIeasuremenI of Excited Slate Absorption Cross Sections in Dye Solutions with Picosecond Light Pulses

N/A
N/A
Protected

Academic year: 2022

Aktie "JVIeasuremenI of Excited Slate Absorption Cross Sections in Dye Solutions with Picosecond Light Pulses "

Copied!
4
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

TiCbMcOhcl VhPnovm£na % J Spriy^p W,\s *o Cf***/- ^ W - yf^, &/s- Hock^aa» e UCf

JVIeasuremenI of Excited Slate Absorption Cross Sections in Dye Solutions with Picosecond Light Pulses

A. Penzkofer and J . Wiedmann

Fakultät f ü r Physik, U n i v e r s i t ä t Regensburg, D-8400 Regensburg, Federal Republic o f Germany

1. I n t r o d u c t i o n

In e x c i t e d s t a t e a b s o r p t i o n m e a s u r e m e n t s i n t e n s e pump p u l s e s . p r o m o t e m o l e c u l e s t o e x c i t e d s t a t e s and weak p r o b e beams i n - d u c e t r a n s i t i o n s t o h i g h e r l y i n g s t a t e s . The m e a s u r e m e n t o f a b - s o l u t e e x c i t e d s t a t e a b s o r p t i o n c r o s s - s e c t i o n s i s c o m p l i c a t e d by t h e f a c t t h a t t h e t r a n s m i s s i o n o f p r o b e l i g h t d e p e n d s on t h e number o f e x c i t e d m o l e c u l e s , on t h e i r o r i e n t a t i o n a l d i s t r i - b u t i o n and on t h e a n g l e b e t w e e n t h e i n v o l v e d t r a n s i t i o n mo- m e n t s .

In t h e p a s t s e v e r a l t e c h n i q u e s h a v e been d e v e l o p e d f o r t h e m e a s u r e m e n t o f a b s o l u t e e x c i t e d s i n g l e t s t a t e a b s o r p t i o n c r o s s - s e c t i o n s : i ) o r i e n t a t i o n f r e e a b s o r p t i o n s p e c t r a were m e a s u r e d w i t h pump a n d p r o b e beam p o l a r i z a t i o n s o r i e n t e d u n d e r an a n g l e o f 5 4 . 7 ° [ 1 J ; i i ) t h e e x c i t e d s t a t e a b s o r p t i o n was i n v e s t i g a t e d a f t e r c o m p l e t e b l e a c h i n g o f t h e g r o u n d s t a t e [ 2 ] ; and i i i ) t h e a b s o r p t i o n m e a s u r e m e n t s w e r e c o m p a r e d w i t h n u m e r i c a l s i m u l a - t i o n s [ 3 ] .

H e r e a f u r t h e r t e c h n i q u e i s d e s c r i b e d w h i c h a v o i d s t h e p r o b l e m s o f o r i e n t a t i o n a l a n i s o t r p p y : An i n t e n s e p i c o s e c o n d pjjmp p u l s e ( f r e q u e n c y v n ) p o p u l a t e s t h e S j - s t a t e . A f t e r m o l e - c u l a r r e o r i e n t a t i o n ( d e l a y t i m e t p - ? T0r ) *w 0 p r o b e beams a r e a p p l i e d . One p r o b e p u l s e a t f r e q u e n c y vp m e a s u r e s t h e e x c i t e d p o p u l a t i o n a n d t h e o t h e r p r o b e beam a t f r e q u e n c y m o n i t o r s t h e e x c i t e d s t a t e a b s o r p t i o n .

Th« m e t h o d i s a p p l i e d t o d e t e r m i n e t h e a b s o l u t e e x c i t e d s t a t e a b s o r p t i o n c r o s s - s e c t i o n s oe( v ^ ) o f r h o d a m i n e 6G a n d r h o d a m i n e B i n e t h a n o l f o r a t r a n s i t i o n b e t w e e n t h e s i n g l e t s t a t e s S1 a n d S - .

2. D e s c r i p t i o n

In F i g . I a s i m p l i f i e d l e v e l scheme o f t h e r h o d a m i n e d y e s i s p r e s e n t e d . A pump p u l s e o f f r e q u e n c y Vp = 1 8 . 9 6 0 cm"** ( s e c o n d h a r m o n i c o f a m o d e l o c k e d N d - g l a s s l a s e r ; d u r a t i o n A t p = 5 p s ) p r o m o t e s t h e m o l e c u l e s t o t h e S j - b a n d . E x c i t e d s t a t e a b s o r p t i o n

(2)

5 A1

3 B9

i A1

F i e l f n e r c j y l e v e l d i 8 g ram f o r r h o d a n i i n p d y e s .

m t o a t f r e q u e n c y V p l e a d s t o t r a n s i t i o n s t o l e v e l 6 . A p r o b e bea o f f r e q u e n c y v . * 9 480 cm"* e x c i t e s . m o l e c u l e s f r o m t h e S i t t h e S4 l e v e l . T h i s s t a t e i s f r e q u e n t l y t e r m e d as S2 when two w e a k l y a b s o r b i n g l o w e r l y i n g s i n g l e t s t a t e s [ 4 1 a r e n e g l e c t e d .

A f t e r r e o r i e n t a t i o n o f t h e e x c i t e d m o l e c u l e s i n t h e S j - s t a t e t h e t r a n s m i s s i o n o f t h e p r o b e beam a t f r e q u e n c y yL i s g i v e n by

e x p I - Oe( Vl) / N3. ( z ) d 2 ] ( 1 )

oe( vL) i s t h e i s o t r o p i c S j - S4 e x c i t e d s t a t e a b s o r p t i o n c r o s s - s e c t i o n a t f r e q u e n c y v ^ .

The t o t a l p o p u l a t i o n /0 N3( z ) d z o f l e v e l 3 i s m o n i t o r e d w i t h t h e p r o b e beam o f f r e q u e n c y V p . I t s t r a n s m i s s i o n t h r o u g h t h e s a m p l e i s —

t

T = e x p { - O12 Hl + I o1 2 - ae( v p ) ] J N3( Z ) C l z } ( 2 )

N = N j ( z ) + N3( , z ) i s t h e t o t a l number d e n s i t y o f d y e m o l e c u l e s i n t h e s o l u t i o n . O j 2 a n d oe( v p ) a r e t h e i s o t r o p i c g r o u n d s t a t e a n d e x c i t e d s t a t e a b s o r p t i o n c r o s s - s e c t i o n s a t f r e q u e n c y V p . I i s t h e s a m p l e l e n g t h .

£

S o l v i n g E q . 2 f o r f N - ( z ) d z a n d i n s e r t i n g t h e r e s u l t i n t o

E q . 1 l e a d s t o 6

l » ( Te) [ oe( v p ) - o12]

I n ( T ) + O12 N i ( 3 )

E q : 3 i s c o n s t a n t s t i m u l a t e d

v a l i d w h e n : i ) t h e e x c i t e d s t a t e p o p u l a t i o n o v e r t h e c r o s s - s e c t i o n s o f t h e p r o b e b e a m s ,

e m i s s i o n c r o s s - s e c t i o n oe m( v i ) a t f r e q u e n c y v N3( r ) i s i i ) t h e j O L I I C L j U C Il U JT 15 n e g l i g i b l y s m a l l , i i i ) t h e t r a n s f e r ^ t o t r i p l e t s t a t e s may be n e g l e c t e d , i v ) t h e p r o b e beams do n o t a f f e c t t h e l e v e l p o p u l a - t i o n s (weak p r o b e beam p o w e r s ) , a n d v ) an i s o t r o p i c o r i e n t a t i o - n a l d i s t r i b u t i o n i n t h e S1 s t a t e i s e s t a b l i s h e d ( d e l a y . o f p r o b e beams tr

- 2 To r >

(3)

The e x p e r i m e n t a l s e t u p i s d e p i c t e d i n F i g . 2 . A m o d e l o t k e d Nd- g l a s s l a s e r i s u s e d . A s i n g l e p u l s e i s s e l e c t e d w i t h an e l e c t r o - o p t i c a l s h u t t e r a n d i n c r e a s e d i n e n e r g y w i t h a N d - g l a s s a m p l i - f i e r . The s e c o n d h a r m o n i c pump p u l s e i s g e n e r a t e d i n a KDP c r y - s t a l . A BK7 g l a s s b l o c k i s u s e d f o r t e m p o r a l s e p a r a t i o n o f t h e f u n d a m e n t a l a n d s e c o n d h a r m o n i c p u l s e s . The t r a n s m i t t e d l a s e r p u l s e s a t V p a n d a r e reduced i n i n t e n s i t y a n d r e f l e c t e d b a c k t o t h e s a m p l e . T h e y a c t a s t i m e d e l a y e d p r o b e p u l s e s a n d t h e i r t r a n s m i s s i o n s a r e m e a s u r e d w i t h d e t e c t o r s P D 1 - 4 .

KDP BK7 F R

F

IJPD

F i g . 2 Experimental arrangement. KDP, c r y s t a l for. second harmonic g e n e r a t i o n ; Ff f i l t e r s ; BK7. g l a s s block ( l e n g t h 10 cm) f o r temporal separations of probe beams vp and v|_; St dye sample; R, r e f l e c t i n g g l a s s wedge; PD, photodetectors.

4 . R e s u l t s . . . '

The p a r a m e t e r s o f t h e a n a l y s e d d y e s [ 5 ] t o g e t h e r w i t h t h e d e - t e r m i n e d e x c i t e d s t a t e a b s o r p t i o n c r o s s - s e c t i o n s oe( v ^ ) ^ r e l i s t e d i n T a b l e 1. T h e oe( v . ) - v a 1 u e s a r e r a t h e r s m a l l . I n c a s e o f r h o d a m i n e 6 G , Ö . ( V] ^ s h o u l d be a p p r o x i m a t e l y e q u a l t o t h e peak S j - S4 a b s o r p t i o n c r o s ^ - s e c t i o n ( t r a n s i t i o n t o a p o s i t i o n s l i g h t l y a b o v e t h e 5* p o t e n t i a l e n e r g y c u r v e [ 6 ] ) . The p e a k . S n - S u a b s o r p t i o n i n r h o d a m i n e 6G i s a f a c t o r o f two l a r g e r t h a n

a b s o r p t i o n J a ( S n - Sj a) *= 4 . 5 x l 0 ~ *7 c m2 a t v = 2 8 6 0 0 c m "1) i - i t s a q r e e w i t h DoT

i ne 6 G t R e ^ J - S J a b s o r p t i o n J a ( S n - S4) = 4 . 5 x l 0 ~1 7

Our r e s u T t s a g r e e w i t h DoYan a n d G o l d s c h m i d t [ 2 ] who f o u n d O ( S j - S4) » 1 . 5 x l O ~ 1 7 c m2 f o r r h o d a m i i

The m e a s u r e m e n t o f a b s o l u t e e x c i t e d s t a t e a b s o r p t i o n c r o s s - s e c t i o n s a t f i x e d * f r e q u e n c i e s a l l o w s t h e c a l i b r a t i o n o f q u a l i - t a t i v e e x c i t e d s t a t e a b s o r p t i o n s p e c t r a w h i c h may be o b t a i n e d w i t h p i c o s e c o n d l i g h t c o n t i n u a [ 7 J .

T a b l e 1

R h o d a m i n e 6G R h o d a m i n e B

c o n c e n t r a t i o n s o l v e n t

° 1 2 of( vp)

1 . 6 5 * 1 0 " ^ H e t h a . n o l

*.17*10~16 cm2 5 * 1 0 ~1 7 c m2

( 2 4 0 . 2 ) x i o ~1 7 c m2

2 . 9 * 1 0 ~5 M e t h a n o l

2 . I x i o "1 6 c m2

5 * 1 0 ~1 7 c m2

(4 + l ) x l b "1 8 c m2

(4)

1. H. E . L e s s i n g a n d A . von J e n a , Chem. Phys*. L e t t . 5 9 , ?W

( 1 9 7 8 ) . ~ 2. G . D o l a n a n d C R . G o l d s c h m i d t , Chem. P h y s . L e t t . 3 9 , 3?0

( 1 9 7 6 ) . — 3 . A . M u l l e r . J . S c h u l z - H e n n i g and H . T a s h i r o , A p p l . P h y s . 1 2 ,

333 ( 1 9 7 7 ) . ~ 4 . H. J a c o b l a n d H . K u h n . 2. E 1 e k t r o c h e m . 6 6 . 46 ( 1 9 6 2 ) . .

5 . W. F a l k e n s t e i n . A . P e n z k o f e r and W. K a i s e r . O o t . Comm. 2 7 ,

151 ( 1 9 7 B ) . ~ 6 . C . O r n e r a n d M . R . T o o o . Chem. P h y s . L e t t . 3 6 . 295 ( 1 9 7 5 ) .

7 . A . P e n z k o f e r a n d W. K a i s e r . O u t . . Q u a n t . E l e c t r . 9 . 315 ( 1977 ) .

Referenzen

ÄHNLICHE DOKUMENTE

Temporal and spectral pulse development along pulse train, (a) Pulse shape, ( b ) Spectral width, (c) Pulse duration.. dium may lead to a temporal pulse modulation to- wards the

ing temperature & m. Below tf m circles indicate heating up and triangles indicate cooling down from above d m. Saturated vapor number density of dimethyl-POPOP vs tempera-

The conversion efficiency of phase-matched third- harmonic generation is reduced by the beam diver- gence, the beam diameter, and the spectral bandwidth of the pump pulse...

A t high pump intensities ^N 3 dz levels off to a linear rise since at high input intensities nearly all pump photons are absorbed by two-photon absorption (T E -> 0) and

The ex- cited state absorption cross-section a e x for 1.053 jum picosecond pulse excitation is determined from energy transmission measurements.. The excited state

G. Simultaneous measurement of energy transmission and input pulse peak intensity makes it possible to calculate the pulse duration. The calculations are verified experimentally for

A picosecond pulse bleaching technique has been described for the measurement of the absorp- tion cross section of molecules absorbing at the long-wavelength side of the S 0

5(c) to indicate the shot-to-shot variation in the case of Nd-silicate glass. The single picosecond pulse spectra show the following be- havior along the pulse train. 1) in the