• Keine Ergebnisse gefunden


2.3 Scenario-based assessment and management strate-

many aquifers. Therefore, managed aquifer recharge (MAR) will likely gain relevance since aquifers can effectively and cheaply store water. Several MAR techniques aim to increase the rainfall-recharge efficiency by collecting surface runoff and supplying it to groundwater storage through percolation dams and infiltration galleries (see Fig. 2.9). In addition, surplus from seawater desalinization is increasingly utilized to replenish groundwater storage through MAR (e.g.,Dahlkeet al., 2018;Ganotet al., 2017). Here, MAR is a measure to make provisions that allow compensating future temporary deficits in water supply, for instance, due to droughts or downtimes of desalinization plants. Various concepts of MAR are summarized in Fig. 2.9.

well injection

and recovery bank filtration infiltration pond

percolation dam recharge release rainfall harvesting/

infiltration gallery

Figure 2.9: Schematic illustrations of selected managed aquifer recharge (MAR) techniques (modified afterDillon,2005).

Another opposing management concept is applied, for example, in the karst catchment Lez, located in France. Here, the aquifer is intentionally overpumped in the dry summer months to dry out the Lez spring and create a depression several meters below the natural discharge point (Fleuryet al.,2009). This way, flooding in the rainy months of autumn and winter can be avoided since heavy rainfall events first replenish the aquifer storage. Such management schemes allow the utilization of the full storage potential and reduce water losses during flood events; however, at the same time, the constant provision of the spring-fed Lez river can be ensured by allocating a particular share of the pumped groundwater to the river. The optimal management scheme depends primarily on the hydrogeological conditions.


Abusaada, M. & M. Sauter (2013). “Studying the Flow Dynamics of a Karst Aquifer System with an Equivalent Porous Medium Model”. In:Groundwater 51 (4), pp. 641–650.


Abusaada, M. J. & M. Sauter (2017). “Recharge Estimation in Karst Aquifers by Applying Water Level Fluctuation Approach”. In: Int. J. Earth Sci. Geophys.3.1. doi:


Allison, G. B., G. W.Gee& S. W.Tyler(1994). “Vadose-Zone Techniques for Estimating Groundwater Recharge in Arid and Semiarid Regions”. In: Soil Sci. Soc. Am. J.58.1, pp. 6–14.doi:10.2136/sssaj1994.03615995005800010002x.

Anderson, M. P. (2005). “Heat as a Ground Water Tracer”. In:Groundwater 43.6, pp. 951–

968. doi:10.1111/j.1745-6584.2005.00052.x.

Anderson, M. P., W. W.Woessner& R. J.Hunt(2015).Applied Groundwater Modeling:

Simulation of Flow and Advective Transport. Second Edition. Academic Press. isbn:

978-0-12-058103-0. doi:10.1016/C2009-0-21563-7.

Assefa, K. A. & A. D. Woodbury (2013). “Transient, spatially varied groundwater recharge modeling: Transient Groundwater Recharge Modeling”. In: Water Resour. Res.

49.8, pp. 4593–4606. doi:10.1002/wrcr.20332.

Atkinson, T. (1977). “Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain)”. In: J. Hydrol. 35.1, pp. 93–110.doi:10.1016/0022- 1694(77)90079-8.

Awan, U. K. & A. Ismaeel (2014). “A new technique to map groundwater recharge in irrigated areas using a SWAT model under changing climate”. In: J. Hydrol. 519, pp. 1368–1382. doi:10.1016/j.jhydrol.2014.08.049.

Bachmat, Y. & J. Bear (1986). “Macroscopic Modelling of Transport Phenomena in Porous Media. 1: The Continuum Approach”. In: Transp. Porous Media1, pp. 213–240.

Bakalowicz, M. (2015). “Karst and karst groundwater resources in the Mediterranean”.

In: Environ. Earth Sci. 74.1, pp. 5–14.doi:10.1007/s12665-015-4239-4.

Barenblatt, G., I. Zheltov & I. Kochina(1960). “Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks [Strata]”. In: J. Appl. Math. Mech.

24.5, pp. 1286–1303. doi:10.1016/0021-8928(60)90107-6.

Barua, S., I. Cartwright, P. E. Dresel& E.Daly(2021). “Using multiple methods to understand groundwater recharge in a semi-arid area”. In: Hydrol. Earth Syst. Sci. 25, pp. 89–104. doi:10.5194/hess-2020-143.

Basmaci, Y. (1977). “Groundwater flow in double porosity media: Carbonate rocks”. PhD thesis. Iowa State University. url:https://dr.lib.iastate.edu/handle/20.500.

12876/80488(visited on 09/27/2022).

Basu, B., P. Morrissey& L. W.Gill (2022). “Application of Nonlinear Time Series and Machine Learning Algorithms for Forecasting Groundwater Flooding in a Lowland Karst Area”. In:Water Resour. Res. 58.2. doi:10.1029/2021WR029576.

Bates, B. C., S. P.Charles& J. P.Hughes(1998). “Stochastic downscaling of numerical climate model simulations”. In:Environ. Model. Softw.13.3, pp. 325–331.doi:10.1016/


Bauer, S., R. Liedl& M.Sauter (2003). “Modeling of karst aquifer genesis: Influence of exchange flow”. In: Water Resour. Res. 39.10.doi:10.1029/2003WR002218.

Bear, J. (1972). Dynamics of Fluids in Porous Media. Dover Publications, p. 764. isbn:


Berkowitz, B., J. Bear& C. Braester (1988). “Continuum models for contaminant transport in fractured porous formations”. In: Water Resour. Res.24.8, pp. 1225–1236.


Berre, I., F. Doster & E. Keilegavlen (2019). “Flow in Fractured Porous Media: A Review of Conceptual Models and Discretization Approaches”. In: Transp. Porous Media 130.1, pp. 215–236.doi:10.1007/s11242-018-1171-6.

Beven, K. & P.Young(2013). “A guide to good practice in modeling semantics for authors and referees”. In: Water Resour. Res.49, pp. 5092–5098.doi:10.1002/wrcr.20393.

Bittner, D., T. S. Narany, B. Kohl, M.Disse & G. Chiogna(2018). “Modeling the hydrological impact of land use change in a dolomite-dominated karst system”. In: J.

Hydrol. 567, pp. 267–279. doi:10.1016/j.jhydrol.2018.10.017.

Bonnet, E., O.Bour, N. E.Odling, P.Davy, I.Main, P.Cowie& B.Berkowitz(2001).

“Scaling of fracture systems in geological media”. In:Rev. Geophys.39.3, pp. 347–383.


Borghi, A., P.Renard& S.Jenni(2012). “A pseudo-genetic stochastic model to generate karstic networks”. In:J. Hydrol.414-415, pp. 516–529. doi:10.1016/j.jhydrol.2011.


Box, G. E. P. (1979). “Robustness in the Strategy of Scientific Model Building”. In:

Robustness in Statistics. Ed. by R. L. Launer& G. N. Wilkinson. Academic Press, pp. 201–236. doi:10.1016/b978-0-12-438150-6.50018-2.

Bresinsky, L., J.Kordilla, I.Engelhardt, Y.Livshitz& M.Sauter (2023). “Variably saturated dual-permeability flow modeling to assess distributed infiltration and vadose storage dynamics of a karst aquifer – The Western Mountain Aquifer in Israel and the West Bank”. In:J. Hydrol.18, p. 100143. doi:10.1016/j.hydroa.2022.100143.

Cartwright, I., B.Gilfedder & H.Hofmann(2014). “Contrasts between estimates of baseflow help discern multiple sources of water contributing to rivers”. In:Hydrol. Earth Syst. Sci. 18.1, pp. 15–30.doi:10.5194/hess-18-15-2014.

Chambers, L., D.Gooddy& A.Binley(2019). “Use and application of CFC-11, CFC-12, CFC-113 and SF6 as environmental tracers of groundwater residence time: A review”. In:

Geosci. Front.10.5, pp. 1643–1652. doi:10.1016/j.gsf.2018.02.017.

Chen, H., J. Sun & X. Chen (2014). “Projection and uncertainty analysis of global precipitation-related extremes using CMIP5 models”. In: Int. J. Climatol. 34.8, pp. 2730–

2748. doi:10.1002/joc.3871.

Chen, X., Z.-C. Zhang, X.-N. Zhang, Y.-Q.Chen, M.-K.Qian& S.-F. Peng(2008).

“Estimation of Groundwater Recharge from Precipitation and Evapotranspiration by Lysimeter Measurement and Soil Moisture Model”. In:J. Hydrol. Eng.13.5, pp. 333–340.


Cook, P. G., I. D.Jolly, F. W. Leaney, G. R.Walker, G. L. Allan, L. K.Fifield &

G. B.Allison (1994). “Unsaturated zone tritium and chlorine 36 profiles from southern Australia: Their use as tracers of soil water movement”. In: Water Resources Research 30.6, pp. 1709–1719. doi:10.1029/94WR00161.

Cook, P. & D.Solomon (1997). “Recent advances in dating young groundwater: chlo- rofluorocarbons, and 85Kr”. In: J. Hydrol. 191.1, pp. 245–265. doi:10.1016/S0022- 1694(96)03051-X.

Crosbie, R. S., P.Binning& J. D.Kalma(2005). “A time series approach to inferring groundwater recharge using the water table fluctuation method”. In: Water Resour. Res.

41.1. doi:10.1029/2004WR003077.

Dafny, E., A. Burg& H.Gvirtzman (2010). “Effects of Karst and geological structure on groundwater flow: The case of Yarqon-Taninim Aquifer, Israel”. In: J. Hydrol.389.3-4, pp. 260–275. doi:10.1016/j.jhydrol.2010.05.038.

Dahlke, H. E., G. T. LaHue, M. R. Mautner, N. P. Murphy, N. K. Patterson, H. Waterhouse, F. Yang & L. Foglia (2018). “Managed Aquifer Recharge as a Tool to Enhance Sustainable Groundwater Management in California”. In: Advances in Chemical Pollution, Environmental Management and Protection. Ed. by J. Friesen&

L.Rodríguez-Sinobas. Vol. 3. Elsevier, pp. 215–275.isbn: 978-0-12-814299-8. doi:


Delhomme, J. P. (1979). “Spatial variability and uncertainty in groundwater flow parameters:

A geostatistical approach”. In:Water Resour. Res. 15.2, pp. 269–280. doi:10.1029/


Dillon, P. (2005). “Future management of aquifer recharge”. In:Hydrol. J.13.1, pp. 313–

316. doi:10.1007/s10040-004-0413-6.

Dixon, K. W., J. R.Lanzante, M. J.Nath, K.Hayhoe, A.Stoner, A.Radhakrishnan, V.Balaji& C. F.Gaitán(2016). “Evaluating the stationarity assumption in statistically downscaled climate projections: is past performance an indicator of future results?” In:

Clim. Change 135.3, pp. 395–408.doi:10.1007/s10584-016-1598-0.

Doherty, J. & D. Welter (2010). “A short exploration of structural noise”. In:Water Resour. Res. 46.5. doi:10.1029/2009WR008377.

Döll, P. (2009). “Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment”. In: Environ. Res. Lett. 4.3, p. 035006. doi:10.


Doummar, J., M. Sauter & T.Geyer(2012). “Simulation of flow processes in a large scale karst system with an integrated catchment model (Mike She) – Identification of relevant parameters influencing spring discharge”. In: J. Hydrol.426-427, pp. 112–123.

doi:10.1016/j.jhydrol.2012.01.021. (Visited on 09/25/2022).

Dreybrodt, W. (1990). “The Role of Dissolution Kinetics in the Development of Karst Aquifers in Limestone: A Model Simulation of Karst Evolution”. In:J. Geol.98.5, pp. 639–

655. doi:10.1086/629431.

Duque, C., M. L.Calvache& P.Engesgaard(2010). “Investigating river–aquifer relations using water temperature in an anthropized environment (Motril-Salobreña aquifer)”. In:

J. Hydrol. 381.1, pp. 121–133.doi:10.1016/j.jhydrol.2009.11.032.

Dvory, N. Z., M. Kuznetsov, Y. Livshitz, G. Gasser, I. Pankratov, O. Lev, E.

Adar& A. Yakirevich(2018). “Modeling sewage leakage and transport in carbonate aquifer using carbamazepine as an indicator”. In: Water Res. 128, pp. 157–170. doi:


Erler, A. R., S. K. Frey, O. Khader, M. d’Orgeville, Y.-J. Park, H.-T. Hwang, D. R. Lapen, W. R. Peltier & E. A. Sudicky (2019). “Evaluating Climate Change Impacts on Soil Moisture and Groundwater Resources Within a Lake-Affected Region”.

In: Water Resour. Res. 55.10, pp. 8142–8163.doi:10.1029/2018WR023822.

Faybishenko, B., G. Bodvarsson, J. Hinds & P. A. Witherspoon (2003). “Scaling and Hierarchy of Models for Flow Processes in Unsaturated Fractured Rock”. In: Scaling Methods in Soil Physics. Ed. by Y. Pachepsky, D. E.Radcliffe & H. M. Selim. CRC Press, pp. 373–417.isbn: 978-0-8493-1374-5.

Faybishenko, B., S. Benson & J.Gale, eds. (2015).Dynamics of fluids and transport in complex fractured-porous systems. Wiley. isbn: 978-1-118-87722-7.

Faybishenko, B., P. A. Witherspoon, C. Doughty, J. T. Geller, T. R. Wood &

R. K. Podgorney (2001). “Multi-Scale Investigations of Liquid Flow in a Fractured Basalt Vadose Zone”. In: Flow and Transport Through Unsaturated Fractured Rock. Ed. by D. D. Evans, T. J. Nicholson & T. C. Rasmussen. 2nd ed. Vol. 42. Wiley Online Library, pp. 161–182. doi:10.1029/GM042p0161.

Fleury, P., B. Ladouche, Y.Conroux, H. Jourde& N. Dörfliger(2009). “Modelling the hydrologic functions of a karst aquifer under active water management – The Lez spring”. In:J. Hydrol. 365.3, pp. 235–243.doi:10.1016/j.jhydrol.2008.11.037.

Flint, A. L., L. E. Flint, E. M. Kwicklis, J. T.Fabryka-Martin & G. S.Bodvarsson (2002). “Estimating recharge at Yucca Mountain, Nevada, USA: comparison of methods”.

In: Hydrol. J.10.1, pp. 180–204. doi:10.1007/s10040-001-0169-1.

Fowler, H. J., S.Blenkinsop & C. Tebaldi(2007). “Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling”.

In: Int. J. Climatol. 27.12, pp. 1547–1578. doi:10.1002/joc.1556.

Ganot, Y., R.Holtzman, N. Weisbrod, I.Nitzan, Y. Katz& D. Kurtzman(2017).

“Monitoring and modeling infiltration–recharge dynamics of managed aquifer recharge with desalinated seawater”. In: Hydrol. Earth Syst. Sci. 21.9, pp. 4479–4493. doi:


Gee, G. W., P. J. Wierenga, B. Andraski, M. H. Young, M. J. Fayer & M. L.

Rockhold (1994). “Variations in Water Balance and Recharge Potential at Three Western Desert Sites”. In: Soil Sci. Soc. Am. J. 58.1, pp. 63–72. doi: 10 . 2136 / sssaj1994.03615995005800010009x.

Gee, G. W. & D.Hillel(1988). “Groundwater recharge in arid regions: Review and critique of estimation methods”. In: Hydrol. Processes 2.3, pp. 255–266. doi: 10.1002/hyp.


Gerber, W. W. (1974). “Management Strategies for Groundwater”. PhD thesis. Lincoln, Nebraska, USA: University of Nebraska.

Geyer, T., S.Birk, R.Liedl& M.Sauter(2008). “Quantification of temporal distribution of recharge in karst systems from spring hydrographs”. In: J. Hydrol.348, pp. 452–463.


Giese, M., T.Reimann, V.Bailly-Comte, J.-C.Maréchal, M.Sauter& T. Geyer (2018). “Turbulent and Laminar Flow in Karst Conduits Under Unsteady Flow Conditions:

Interpretation of Pumping Tests by Discrete Conduit-Continuum Modeling”. In:Water Resour. Res. 54.3, pp. 1918–1933. doi:10.1002/2017WR020658.

Giorgi, F. (2010). “Uncertainties in climate change projections, from the global to the regional scale”. In: EPJ Web of Conferences. Vol. 9. EDP Sciences, pp. 115–129. doi:


Goderniaux, P., S.Brouyère, H. J.Fowler, S. Blenkinsop, R.Therrien, P. Orban

& A.Dassargues (2009). “Large scale surface–subsurface hydrological model to assess climate change impacts on groundwater reserves”. In: J. Hydrol. 373.1-2, pp. 122–138.


Gorelick, S. M. & C.Zheng(2015). “Global change and the groundwater management challenge: Groundwater Management Challenge”. In: Water Resour. Res. 51.5, pp. 3031–

3051. doi:10.1002/2014WR016825.

Gyamfi, C., J. M. Ndambuki, G. K. Anornu & G. E. Kifanyi (2017). “Groundwater recharge modelling in a large scale basin: an example using the SWAT hydrologic model”.

In:Model. Earth Syst. Environ.3.4, pp. 1361–1369.doi:10.1007/s40808-017-0383-z.

Halford, K. J. & G. C.Mayer(2000). “Problems Associated with Estimating Ground Water Discharge and Recharge from Stream-Discharge Records”. In:Groundwater 38.3, pp. 331–342. doi:10.1111/j.1745-6584.2000.tb00218.x.

Hardin, G. (1968). “The Tragedy of the Commons: The population problem has no technical solution; it requires a fundamental extension in morality”. In: Science 162.3859, pp. 1243–1248. doi:10.1126/science.162.3859.1243.

Harrington, G. A., P. G.Cook& A. L.Herczeg(2002). “Spatial and Temporal Variability of Ground Water Recharge in Central Australia: A Tracer Approach”. In: Groundwater 40.5, pp. 518–527.doi:10.1111/j.1745-6584.2002.tb02536.x.

Hartmann, A., J. A.Barberá, J.Lange, B.Andreo& M.Weiler(2013). “Progress in the hydrologic simulation of time variant recharge areas of karst systems – Exemplified at a karst spring in Southern Spain”. In: Adv. Water Resour. 54, pp. 149–160. doi:


Hartmann, A., J.Lange, À.Vivó Aguado, N.Mizyed, G. Smiatek& H.Kunstmann (2012). “A multi-model approach for improved simulations of future water availability at a large Eastern Mediterranean karst spring”. In: J. Hydrol.468-469, pp. 130–138.doi:


Hartmann, A., M.Mudarra, B.Andreo, A.Marín, T. Wagener& J.Lange (2014).

“Modeling spatiotemporal impacts of hydroclimatic extremes on groundwater recharge at a Mediterranean karst aquifer”. In: Water Resour. Res. 50, pp. 6507–6521. doi:


Hawkins, E. & R.Sutton (2011). “The potential to narrow uncertainty in projections of regional precipitation change”. In: Climate Dyn. 37.1, pp. 407–418.doi:10.1007/


He, X., M. Sinan, H.Kwak& H. Hoteit(2021). “A corrected cubic law for single-phase laminar flow through rough-walled fractures”. In: Adv. Water Resour. 154, p. 103984.


Healy, R. W. & P. G. Cook (2002). “Using groundwater levels to estimate recharge”. In:

Hydrol. J. 10.1, pp. 91–109.doi:10.1007/s10040-001-0178-0.

Healy, R. W., J. R.Gray, M. P.Vries& P. C.Mills(1989). “Water balance at a low-level radioactive-waste disposal site”. In: J. Am. Water Resour. Assoc.25.2, pp. 381–390. doi:


Healy, R. W. & B. R. Scanlon(2010).Estimating Groundwater Recharge. Cambridge University Press. 245 pp. isbn: 978-0-511-79768-2.

Hendrickx, J. M. H. & M.Flury(2001). “Uniform and Preferential Flow Mechanisms in the Vadose Zone”. In:Conceptual Models of Flow and Transport in the Fractured Vadose Zone. Ed. byNational Research Council. The National Academies Press. Chap. 5, pp. 149–187. doi:10.17226/10102.

Hepach, P., L. Bresinsky, M. Sauter, Y.Livshitz & I. Engelhardt(n.d.). “Intercom- parison of methods for predicting groundwater recharge in Mediterranean karst aquifers under present and future climate”. In preperation.

Heppner, C. S., J. R. Nimmo, G. J. Folmar, W. J. Gburek & D. W. Risser(2007).

“Multiple-methods investigation of recharge at a humid-region fractured rock site, Penn- sylvania, USA”. In: Hydrol. J.15.5, pp. 915–927. doi:10.1007/s10040-006-0149-6. Höge, M., A. Guthke & W. Nowak (2019). “The hydrologist’s guide to Bayesian model selection, averaging and combination”. In: J. Hydrol. 572, pp. 96–107. doi:


Hong, Y., K.-l. Hsu, H. Moradkhani & S. Sorooshian (2006). “Uncertainty quan- tification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response”. In: Water Resour. Res. 42.8. doi: 10 . 1029 / 2005WR004398.

Hu, C., Y.Hao, T.-C. J.Yeh, B.Pang& Z. Wu(2008). “Simulation of spring flows from a karst aquifer with an artificial neural network”. In: Hydrol. Process.22.5, pp. 596–604.


Hyman, J. D., S. Karra, N. Makedonska, C. W. Gable, S. L. Painter & H. S.

Viswanathan(2015). “DfnWorks: A discrete fracture network framework for modeling subsurface flow and transport”. In: Comput. Geosci. 84, pp. 10–19. doi:10.1016/j.


IPCC (2001). “Developing and Applying Scenarios”. In: Climate Change 2001: Impacts, Adaptation, and Vulnerability. Ed. by J. J.McCarthy, O. F.Canziani, N. A.Leary, D. J. Dokken& K. S.White. Cambridge University Press. Chap. 3, pp. 147–190.isbn:


– (2013).Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Ed.

by T. F.Stocker, D.Qin, G.-K.Plattner, M.Tignor, S. K.Allen, J.Boschung, A.

Nauels, Y.Xia, V.Bex & P. M.Midgley. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. 1535 pp. doi:10.1017/CBO9781107415324.

– (2021a). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Ed. by V. Masson-Delmotte, P.Zhai, A. Pirani, S. L.Connors, C.Péan, S. Berger, Y.Caud N. andChen, L.Goldfarb, M. I. Gomis, M.Huang, K.Leitzell, E. Lonnoy, J. B. R.Matthews, T. K.Maycock, T. Waterfield, O.Yelekçi, R.Yu

& B.Zhou. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, p. 2391. doi:10.1017/9781009157896.

– (2021b). Interactive Atlas.url: http://interactive-atlas.ipcc.ch/(visited on 11/11/2022).

Jeannin, P.-Y. & M. Sauter (1998). “Analysis of karst hydrodynamic behaviour using global approaches: a review”. In: Bull. Hydrol.16.16, pp. 31–48.

Jeannin, P.-Y., G.Artigue, C.Butscher, Y.Chang, J.-B.Charlier, L.Duran, L.Gill, A. Hartmann, A. Johannet, H.Jourde, A. Kavousi, T.Liesch, Y. Liu, M.Lüthi, A.Malard, N.Mazzilli, E. Pardo-Igúzquiza, D.Thiéry, T.Reimann, P.Schuler, T.Wöhling& A.Wunsch(2021). “Karst modelling challenge 1: Results of hydrological modelling”. In:J. Hydrol. 600, p. 126508.doi:10.1016/j.jhydrol.2021.126508.

Kaufmann, G. & J.Braun (1999). “Karst aquifer evolution in fractured rocks”. In:Water Resour. Res. 35.11, pp. 3223–3238. doi:10.1029/1999WR900169.

Kim, C. P., J. N. M.Stricker& P. J. J. F.Torfs (1996). “An Analytical Framework for the Water Budget of the Unsaturated Zone”. In:Water Resour. Res.32.12, pp. 3475–3484.


Kim, S., S.Eghdamirad, A.Sharma& J. H.Kim (2020). “Quantification of Uncertainty in Projections of Extreme Daily Precipitation”. In: Earth Space Sci.7.8. doi:10.1029/


Kiraly, L. (1975). “Rapport sur l’état actuel des connaissances dans le domaine des caractères physiques des roches karstiques”. In: Hydrogéologie des terrains karstiques. Ed. by A. Burger & L. Dubertret. International Association of Hydrogeologists, pp. 55–67.

– (1998). “Modelling karst aquifers by the combined discrete channel and continuum approach”. In: Bull. Cent. Hydrol.16, pp. 77–98.

Kitanidis, P. K. & R. L.Bras (1980). “Real-time forecasting with a conceptual hydrologic model: 1. Analysis of uncertainty”. In: Water Resour. Res. 16.6, pp. 1025–1033. doi:


Kordilla, J., T.Noffz, M.Dentz, T.Geyer & A. M.Tartakovsky(2017). “Effect of Unsaturated Flow Modes on Partitioning Dynamics of Gravity-Driven Flow at a Simple Fracture Intersection: Laboratory Study and Three-Dimensional Smoothed Particle Hydrodynamics Simulations”. In: Water Resour. Res. 53.11, pp. 9496–9518. doi: 10.


Kordilla, J., M.Sauter, T.Reimann & T.Geyer(2012). “Simulation of saturated and unsaturated flow in karst systems at catchment scale using a double continuum approach”.

In: Hydrol. Earth Syst. Sci. 16.10, pp. 3909–3923.doi: 10.5194/hess-16-3909-2012.

Kordilla, J. (2014). “Flow and transport in saturated and unsaturated fractured porous media: Development of particle-based modeling approaches”. PhD thesis. University of Göttingen. url: http://hdl.handle.net/11858/00- 1735- 0000- 0023- 9901- 9 (visited on 08/12/2016).

– (2019). Transfer: Western Mountain Aquifer to Mediterranean aquifer systems. Unpub- lished presentation.

Kordilla, J., M. Dentz & A. M. Tartakovsky (2021). “Numerical and Analytical Modeling of Flow Partitioning in Partially Saturated Fracture Networks”. In: Water Resour. Res. 57.4. doi:10.1029/2020WR028775.

Kosow, H. & R.Gaßner (2008). Methods of Future and Scenario Analysis - Overview, Assessment, and Selection Criteria. Bonn, Germany: German Development Institute.

133 pp.isbn: 978-3-88985-375-2.

Lanzante, J. R., K. W.Dixon, M. J.Nath, C. E.Whitlock& D.Adams-Smith(2018).

“Some Pitfalls in Statistical Downscaling of Future Climate”. In:Bull. Amer. Meteor. Soc.

99.4, pp. 791–803. doi:10.1175/BAMS-D-17-0046.1.

Le Roux, R., M.Katurji, P.Zawar-Reza, H. Quénol& A.Sturman(2018). “Compar- ison of statistical and dynamical downscaling results from the WRF model”. In: Environ.

Model. Softw. 100, pp. 67–73. doi:10.1016/j.envsoft.2017.11.002.

Li, H., L.Luo, E. F.Wood& J.Schaake(2009). “The role of initial conditions and forcing uncertainties in seasonal hydrologic forecasting”. In: Journal of Geophysical Research114 (D4), p. D04114.doi:10.1029/2008JD010969.

Liu, H. H., C. Doughty & G. S. Bodvarsson (1998). “An active fracture model for unsaturated flow and transport in fractured rocks”. In:Water Resour. Res.34.10, pp. 2633–

2646. doi:10.1029/98WR02040.

Liu, R., J.Wang, H.Zhan, Z. Chen, W.Li, D.Yang& S. Zheng(2021). “Influence of thick karst vadose zone on aquifer recharge in karst formations”. In:J. Hydrol.592.125791, pp. 1–14.doi:10.1016/j.jhydrol.2020.125791.

Long, J. C. S., J. S. Remer, C. R. Wilson & P. A. Witherspoon (1982). “Porous media equivalents for networks of discontinuous fractures”. In:Water Resour. Res. 18.3, pp. 645–658. doi:10.1029/WR018i003p00645.

Mahmud, K., G. Mariethoz, A.Baker, P. C. Treble, M. Markowska & E.McGuire (2016). “Estimation of deep infiltration in unsaturated limestone environments using cave lidar and drip count data”. In: Hydrology and Earth System Sciences 20.1, pp. 359–373.


Manna, F., K. M. Walton, J. A. Cherry & B. L. Parker (2017). “Mechanisms of recharge in a fractured porous rock aquifer in a semi-arid region”. In: J. Hydrol. 555, pp. 869–880. doi:10.1016/j.jhydrol.2017.10.060.

Mau, D. P. & T. C.Winter(1997). “Estimating Ground-Water Recharge from Streamflow Hydrographs for a Small Mountain Watershed in a Temperate Humid Climate, New Hampshire, USA”. In: Groundwater 35.2, pp. 291–304. doi: 10.1111/j.1745-6584.


Mayaud, C., T.Wagner, R.Benischke& S.Birk(2016). “Understanding changes in the hydrological behaviour within a karst aquifer (Lurbach system, Austria)”. In:Carbonates Evaporites 31.4, pp. 357–365. doi:10.1007/s13146-013-0172-3.

Mayaud, C., P. Walker, S. Hergarten & S. Birk (2015). “Nonlinear Flow Process:

A New Package to Compute Nonlinear Flow in MODFLOW”. In: Groundwater 53.4, pp. 645–650. doi:10.1111/gwat.12243.

McLaren, R. G., P. A.Forsyth, E. A.Sudicky, J. E.VanderKwaak, F. W.Schwartz

& J. H. Kessler (2000). “Flow and transport in fractured tuff at Yucca Mountain:

numerical experiments on fast preferential flow mechanisms”. In: J. Contam. Hydrol.

43.3-4, pp. 211–238. doi:10.1016/S0169-7722(00)00085-1.

Meinshausen, M., Z. R. J.Nicholls, J. Lewis, M. J.Gidden, E.Vogel, M. Freund, U. Beyerle, C. Gessner, A. Nauels, N. Bauer, J. G. Canadell, J. S. Daniel, A.

John, P. B.Krummel, G.Luderer, N. Meinshausen, S. A.Montzka, P. J. Rayner, S. Reimann, S. J. Smith, M. van denBerg, G. J. M. Velders, M. K. Vollmer&

R. H. J. Wang (2020). “The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500”. In:Geosci. Model Dev.13.8, pp. 3571–3605.


Mekonnen, M. M. & A. Y. Hoekstra (2016). “Four billion people facing severe water scarcity”. In: Sci. Adv.2, e1500323.doi:10.1126/sciadv.1500323.

Messerschmid, C., J. Lange & M.Sauter (2018). “Assessment of transmission loss in a Mediterranean karstic watershed (Wadi Natuf, West Bank)”. In:Hydrol. Processes 32.10, pp. 1375–1390. doi:10.1002/hyp.11496.

Meyboom, P. (1961). “Estimating ground-water recharge from stream hydrographs”. In:J.

Geophys. Res. 66.4, pp. 1203–1214.doi:10.1029/JZ066i004p01203.

Moinfar, A., W. Narr, M.-H. Hui, B. Mallison & S. H. Lee (2011). “Comparison of Discrete-Fracture and Dual-Permeability Models for Multiphase Flow in Naturally Fractured Reservoirs”. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, SPE–142295. doi:10.2118/142295-MS.

Moss, R. H., J. A.Edmonds, K. A. Hibbard, M. R.Manning, S. K. Rose, D. P. van Vuuren, T. R. Carter, S. Emori, M. Kainuma, T. Kram, G. A. Meehl, J. F. B.

Mitchell, N.Nakicenovic, K. Riahi, S. J.Smith, R. J.Stouffer, A. M.Thomson, J. P.Weyant & T. J. Wilbanks(2010). “The next generation of scenarios for climate change research and assessment”. In: Nature 463.7282, pp. 747–756. doi: 10.1038/


Mualem, Y. (1976). “A new model for predicting the hydraulic conductivity of unsat- urated porous media”. In: Water Resour. Res. 12.3, pp. 513–522. doi: 10 . 1029 / WR012i003p00513.

Murray, R. C. (1960). “Origin of Porosity in Carbonate Rocks”. In:J. Sediment. Res. 30, pp. 59–84. doi:10.1306/74D709CA-2B21-11D7-8648000102C1865D.

Nativ, R., E.Adar, O.Dahan& M.Geyh(1995). “Water Recharge and Solute Transport Through the Vadose Zone of Fractured Chalk Under Desert Conditions”. In:Water Resour.

Res. 31.2, pp. 253–261. doi:10.1029/94WR02536.