KASUTATUD KIRJANDUS

Im Dokument TARTU ÜLIKOOL LOODUS (Seite 36-47)

Kirjanduse loetelu

Andrei, G., van den Oord, J., Fiten, P., Opdenakker, G., De Wolf-Peeters, C., De Clercq, E., & Snoeck, R.

(2005). Organotypic Epithelial Raft Cultures as a Model for Evaluating Compounds against Alphaherpesviruses. Antimicrob Agents Chemother 49, 4671–4680.

Arend, A., & Aunapuu, M. (2012). Histoloogia.

Aydin, I., Weber, S., Snijder, B., Ventayol, P.S., Kühbacher, A., Becker, M., Day, P.M., Schiller, J.T., Kann, M., Pelkmans, L., Helenius, A., & Schelhaas, M. (2014). Large Scale RNAi Reveals the

Requirement of Nuclear Envelope Breakdown for Nuclear Import of Human Papillomaviruses. PLOS Pathogens 10, e1004162.

Belnap, D.M., Olson, N.H., Cladel, N.M., Newcomb, W.W., Brown, J.C., Kreider, J.W., Christensen, N.D., & Baker, T.S. (1996). Conserved Features in Papillomavirus and Polyomavirus Capsids. J Mol Biol 259, 249–263.

Bergvall, M., Melendy, T., & Archambault, J. (2013). The E1 proteins. Virology 445, 35–56.

Bernard, H.-U., Burk, R.D., Chen, Z., van Doorslaer, K., Hausen, H. zur, & de Villiers, E.-M. (2010).

Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 401, 70–79.

Bienkowska-Haba, M., Luszczek, W., Myers, J.E., Keiffer, T.R., DiGiuseppe, S., Polk, P., Bodily, J.M., Scott, R.S., & Sapp, M. (2018). A new cell culture model to genetically dissect the complete human papillomavirus life cycle. PLOS Pathogens 14, e1006846.

Bodily, J.M., Wrobel, G.A., Hennigan, C., & Rodriguez, C.M. (2013). Regulation of the human papillomavirus type 16 late promoter by E7 and the cell cycle. Virology 443, 11–19.

Brown, D.R., Kitchin, D., Qadadri, B., Neptune, N., Batteiger, T., & Ermel, A. (2006). The human papillomavirus type 11 E1^E4 protein is a transglutaminase 3 substrate and induces abnormalities of the cornified cell envelope. Virology 345, 290–298.

Bryan, J.T., & Brown, D.R. (2000). Association of the Human Papillomavirus Type 11 E1∧E4 Protein with Cornified Cell Envelopes Derived from Infected Genital Epithelium. Virology 277, 262–269.

Bryan, J.T., & Brown, D.R. (2001). Transmission of Human Papillomavirus Type 11 Infection by Desquamated Cornified Cells. Virology 281, 35–42.

Buck, C.B., Thompson, C.D., Pang, Y.-Y.S., Lowy, D.R., & Schiller, J.T. (2005). Maturation of Papillomavirus Capsids. J Virol 79, 2839–2846.

Buck, C.B., Cheng, N., Thompson, C.D., Lowy, D.R., Steven, A.C., Schiller, J.T., & Trus, B.L. (2008).

Arrangement of L2 within the Papillomavirus Capsid. J Virol 82, 5190–5197.

Buck, C.B., Day, P.M., & Trus, B.L. (2013). The Papillomavirus Major Capsid Protein L1. Virology 445, 169–174.

37

Chen, X.S., Garcea, R.L., Goldberg, I., Casini, G., & Harrison, S.C. (2000). Structure of Small Virus-like Particles Assembled from the L1 Protein of Human Papillomavirus 16. Molecular Cell 5, 557–567.

Cheng, S., Schmidt-Grimminger, D.C., Murant, T., Broker, T.R., & Chow, L.T. (1995). Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev. 9, 2335–2349.

Chow, L.T., Reilly, S.S., Broker, T.R., & Taichman, L.B. (1987). Identification and mapping of human papillomavirus type 1 RNA transcripts recovered from plantar warts and infected epithelial cell cultures. J Virol 61, 1913–1918.

Conway, M.J., & Meyers, C. (2009). Replication and Assembly of Human Papillomaviruses. J Dent Res 88, 307–317.

Culp, T.D., & Christensen, N.D. (2004). Kinetics of in vitro adsorption and entry of papillomavirus virions. Virology 319, 152–161.

Culp, T.D., Budgeon, L.R., Marinkovich, M.P., Meneguzzi, G., & Christensen, N.D. (2006a).

Keratinocyte-Secreted Laminin 5 Can Function as a Transient Receptor for Human Papillomaviruses by Binding Virions and Transferring Them to Adjacent Cells. J Virol 80, 8940–8950.

Culp, T.D., Cladel, N.M., Balogh, K.K., Budgeon, L.R., Mejia, A.F., & Christensen, N.D. (2006b).

Papillomavirus Particles Assembled in 293TT Cells Are Infectious In Vivo. J Virol 80, 11381–11384.

Day, P.M., Lowy, D.R., & Schiller, J.T. (2003). Papillomaviruses infect cells via a clathrin-dependent pathway. Virology 307, 1–11.

DiGiuseppe, S., Luszczek, W., Keiffer, T.R., Bienkowska-Haba, M., Guion, L.G.M., & Sapp, M.J. (2016).

Incoming human papillomavirus type 16 genome resides in a vesicular compartment throughout mitosis. Proc Natl Acad Sci U S A 113, 6289–6294.

DiMaio, D., & Petti, L. (2013). The E5 Proteins. Virology 445, 99–114.

Doorbar, J. (2013). The E4 protein; structure, function and patterns of expression. Virology 445, 80–

98.

Doorbar, J., Quint, W., Banks, L., Bravo, I.G., Stoler, M., Broker, T.R., & Stanley, M.A. (2012). The Biology and Life-Cycle of Human Papillomaviruses. Vaccine 30, F55–F70.

Dziduszko, A., & Ozbun, M.A. (2013). Annexin A2 and S100A10 Regulate Human Papillomavirus Type 16 Entry and Intracellular Trafficking in Human Keratinocytes. J Virol 87, 7502–7515.

Embers, M.E., Budgeon, L.R., Culp, T.D., Reed, C.A., Pickel, M.D., & Christensen, N.D. (2004).

Differential antibody responses to a distinct region of human papillomavirus minor capsid proteins.

Vaccine 22, 670–680.

Evander, M., Frazer, I.H., Payne, E., Qi, Y.M., Hengst, K., & McMillan, N.A. (1997). Identification of the alpha6 integrin as a candidate receptor for papillomaviruses. J Virol 71, 2449–2456.

Everett, R.D. (2006). Interactions between DNA viruses, ND10 and the DNA damage response.

Cellular Microbiology 8, 365–374.

38

Fareed, G.C. (1980). DNA tumor viruses. Molecular biology of tumor viruses, 2nd edition, Part 2: J.

Tooze, ed. New York: Cold Spring Harbor Laboratory. (1980). 958 pp. $55.00. Cell 21, 593.

Finnen, R.L., Erickson, K.D., Chen, X.S., & Garcea, R.L. (2003). Interactions between Papillomavirus L1 and L2 Capsid Proteins. J Virol 77, 4818–4826.

Florin, L., Schäfer, F., Sotlar, K., Streeck, R.E., & Sapp, M. (2002). Reorganization of Nuclear Domain 10 Induced by Papillomavirus Capsid Protein L2. Virology 295, 97–107.

Gambhira, R., Karanam, B., Jagu, S., Roberts, J.N., Buck, C.B., Bossis, I., Alphs, H., Culp, T., Christensen, N.D., & Roden, R.B.S. (2007). A Protective and Broadly Cross-Neutralizing Epitope of Human

Papillomavirus L2. J Virol 81, 13927–13931.

Gillespie, K.A., Mehta, K.P., Laimins, L.A., & Moody, C.A. (2012). Human Papillomaviruses Recruit Cellular DNA Repair and Homologous Recombination Factors to Viral Replication Centers. J Virol 86, 9520–9526.

Grassmann, K., Rapp, B., Maschek, H., Petry, K.U., & Iftner, T. (1996). Identification of a

differentiation-inducible promoter in the E7 open reading frame of human papillomavirus type 16 (HPV-16) in raft cultures of a new cell line containing high copy numbers of episomal HPV-16 DNA. J Virol 70, 2339–2349.

Gu, W., Li, M., Zhao, W.M., Fang, N.X., Bu, S., Frazer, I.H., & Zhao, K.-N. (2004). tRNASer(CGA) differentially regulates expression of wild-type and codon-modified papillomavirus L1 genes. Nucleic Acids Res 32, 4448–4461.

Hagensee, M.E., Yaegashi, N., & Galloway, D.A. (1993). Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J Virol 67, 315–322.

Hagensee, M.E., Olson, N.H., Baker, T.S., & Galloway, D.A. (1994). Three-dimensional structure of vaccinia virus-produced human papillomavirus type 1 capsids. J Virol 68, 4503–4505.

Harper, D.M., Franco, E.L., Wheeler, C., et al. (2004). Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. The Lancet 364, 1757–1765.

Helfer, C.M., Yan, J., & You, J. (2014). The Cellular Bromodomain Protein Brd4 has Multiple Functions in E2-Mediated Papillomavirus Transcription Activation. Viruses 6, 3228–3249.

Holmgren, S.C., Patterson, N.A., Ozbun, M.A., & Lambert, P.F. (2005). The Minor Capsid Protein L2 Contributes to Two Steps in the Human Papillomavirus Type 31 Life Cycle. J Virol 79, 3938–3948.

Jang, M.K., Kwon, D., & McBride, A.A. (2009). Papillomavirus E2 Proteins and the Host Brd4 Protein Associate with Transcriptionally Active Cellular Chromatin. J Virol 83, 2592–2600.

Kadaja, M., Silla, T., Ustav, E., & Ustav, M. (2009). Papillomavirus DNA replication — From initiation to genomic instability. Virology 384, 360–368.

39

Kirnbauer, R., Booy, F., Cheng, N., Lowy, D.R., & Schiller, J.T. (1992). Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci U S A 89, 12180–12184.

Klumpp, D.J., & Laimins, L.A. (1999). Differentiation-Induced Changes in Promoter Usage for Transcripts Encoding the Human Papillomavirus Type 31 Replication Protein E1. Virology 257, 239–

246.

López-Bueno, A., Mavian, C., Labella, A.M., Castro, D., Borrego, J.J., Alcami, A., & Alejo, A. (2016).

Concurrence of Iridovirus, Polyomavirus, and a Unique Member of a New Group of Fish Papillomaviruses in Lymphocystis Disease-Affected Gilthead Sea Bream. J Virol 90, 8768–8779.

Lowy, D.R. (2016). HPV vaccination to prevent cervical cancer and other HPV-associated disease:

from basic science to effective interventions. J Clin Invest 126, 5–11.

Lowy, D.R., & Schiller, J.T. (2006). Prophylactic human papillomavirus vaccines. J Clin Invest 116, 1167–1173.

Ma, B., Roden, R.B., Hung, C.-F., & Wu, T.-C. (2011). HPV pseudovirions as DNA delivery vehicles. Ther Deliv 2, 427–430.

Mao, C., Koutsky, L.A., Ault, K.A., Wheeler, C.M., Brown, D.R., Wiley, D.J., Alvarez, F.B., Bautista, O.M., Jansen, K.U., & Barr, E. (2006). Efficacy of human papillomavirus-16 vaccine to prevent cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol 107, 18–27.

McBride, A.A. (2008). Replication and Partitioning of Papillomavirus Genomes. Adv Virus Res 72, 155–

205.

McBride, A.A. (2013). The Papillomavirus E2 proteins. Virology 445, 57–79.

McBride, A.A. (2017a). Oncogenic human papillomaviruses. Philos Trans R Soc Lond B Biol Sci 372.

McBride, A.A. (2017b). Mechanisms and strategies of papillomavirus replication. Biological Chemistry 398, 919–927.

McIntosh, P.B., Martin, S.R., Jackson, D.J., Khan, J., Isaacson, E.R., Calder, L., Raj, K., Griffin, H.M., Wang, Q., Laskey, P., Eccleston, J.F., & Doorbar, J. (2008). Structural Analysis Reveals an Amyloid Form of the Human Papillomavirus Type 16 E1∧E4 Protein and Provides a Molecular Basis for Its Accumulation. J Virol 82, 8196–8203.

McLaughlin-Drubin, M.E., & Meyers, C. (2005a). Propagation of infectious, high-risk HPV in organotypic “raft” culture. Methods Mol. Med. 119, 171–186.

McLaughlin-Drubin, M.E., & Meyers, C. (2005b). Propagation of Infectious, High-Risk HPV in Organotypic “Raft” Culture. In Human Papillomaviruses, (Humana Press), pp. 171–186.

McLaughlin-Drubin, M.E., Wilson, S., Mullikin, B., Suzich, J., & Meyers, C. (2003). Human papillomavirus type 45 propagation, infection, and neutralization. Virology 312, 1–7.

McLaughlin-Drubin, M.E., Crum, C.P., & Münger, K. (2011). Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B histone demethylase expression and causes epigenetic reprogramming.

Proc Natl Acad Sci U S A 108, 2130–2135.

40

Meyers, C., Frattini, M.G., Hudson, J.B., & Laimins, L.A. (1992). Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation. Science 257, 971–973.

Miller, A.D. (2012). Chapter 6 - Neoplasia and Proliferative Disorders of Nonhuman Primates. In Nonhuman Primates in Biomedical Research (Second Edition), C.R. Abee, K. Mansfield, S. Tardif, & T.

Morris, eds. (Boston: Academic Press), pp. 325–356.

Milligan, S.G., Veerapraditsin, T., Ahamet, B., Mole, S., & Graham, S.V. (2007). Analysis of novel human papillomavirus type 16 late mRNAs in differentiated W12 cervical epithelial cells. Virology 360, 172–181.

Moody, C.A., & Laimins, L.A. (2009). Human Papillomaviruses Activate the ATM DNA Damage Pathway for Viral Genome Amplification upon Differentiation. PLOS Pathogens 5, e1000605.

Ozbun, M.A. (2002). Human Papillomavirus Type 31b Infection of Human Keratinocytes and the Onset of Early Transcription. J Virol 76, 11291–11300.

Ozbun, M.A., & Meyers, C. (1997). Characterization of late gene transcripts expressed during vegetative replication of human papillomavirus type 31b. J Virol 71, 5161–5172.

Porter, S., Stepp, W.H., Stamos, J., & McBride, A.A. (2017). HOST CELL RESTRICTION FACTORS THAT LIMIT TRANSCRIPTION AND REPLICATION OF HUMAN PAPILLOMAVIRUS. Virus Res 231, 10–20.

Pyeon, D., Lambert, P.F., & Ahlquist, P. (2005). Production of infectious human papillomavirus independently of viral replication and epithelial cell differentiation. Proc Natl Acad Sci U S A 102, 9311–9316.

Querbes, W., O’Hara, B.A., Williams, G., & Atwood, W.J. (2006). Invasion of Host Cells by JC Virus Identifies a Novel Role for Caveolae in Endosomal Sorting of Noncaveolar Ligands. J Virol 80, 9402–

9413.

Reinson, T., Toots, M., Kadaja, M., Pipitch, R., Allik, M., Ustav, E., & Ustav, M. (2013). Engagement of the ATR-Dependent DNA Damage Response at the Human Papillomavirus 18 Replication Centers during the Initial Amplification. J Virol 87, 951–964.

Rivera-Molina, Y.A., Martínez, F.P., & Tang, Q. (2013). Nuclear domain 10 of the viral aspect. World J Virol 2, 110–122.

Roberts, J.N., Buck, C.B., Thompson, C.D., Kines, R., Bernardo, M., Choyke, P.L., Lowy, D.R., & Schiller, J.T. (2007). Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and

inhibited by carrageenan. Nature Medicine 13, 857–861.

Roman, A., & Munger, K. (2013). The papillomavirus E7 proteins. Virology 445, 138–168.

Rose, R.C., Bonnez, W., Reichman, R.C., & Garcea, R.L. (1993). Expression of human papillomavirus type 11 L1 protein in insect cells: in vivo and in vitro assembly of viruslike particles. J Virol 67, 1936–

1944.

Sakakibara, N., Chen, D., & McBride, A.A. (2013). Papillomaviruses Use Recombination-Dependent Replication to Vegetatively Amplify Their Genomes in Differentiated Cells. PLOS Pathogens 9, e1003321.

41

Scheffer, K.D., Gawlitza, A., Spoden, G.A., Zhang, X.A., Lambert, C., Berditchevski, F., & Florin, L.

(2013). Tetraspanin CD151 Mediates Papillomavirus Type 16 Endocytosis. J Virol 87, 3435–3446.

Selinka, H.-C., Giroglou, T., Nowak, T., Christensen, N.D., & Sapp, M. (2003). Further Evidence that Papillomavirus Capsids Exist in Two Distinct Conformations. J Virol 77, 12961–12967.

Shah, S.D., Doorbar, J., & Goldstein, R.A. (2010). Analysis of Host–Parasite Incongruence in Papillomavirus Evolution Using Importance Sampling. Mol Biol Evol 27, 1301–1314.

Stubenrauch, F., & Laimins, L.A. (1999). Human papillomavirus life cycle: active and latent phases.

Seminars in Cancer Biology 9, 379–386.

Vande Pol, S.B., & Klingelhutz, A.J. (2013). Papillomavirus E6 oncoproteins. Virology 445, 115–137.

de Villiers, E.-M. (2013). Cross-roads in the classification of papillomaviruses. Virology 445, 2–10.

Wang, J.W., & Roden, R.B.S. (2013). L2, the minor capsid protein of papillomavirus. Virology 445, 175–186.

Wang, Q., Griffin, H., Southern, S., Jackson, D., Martin, A., McIntosh, P., Davy, C., Masterson, P.J., Walker, P.A., Laskey, P., Omary, M.B., & Doorbar, J. (2004). Functional Analysis of the Human

Papillomavirus Type 16 E1∧E4 Protein Provides a Mechanism for In Vivo and In Vitro Keratin Filament Reorganization. J Virol 78, 821–833.

Wang, X., Meyers, C., Wang, H.-K., Chow, L.T., & Zheng, Z.-M. (2011). Construction of a Full Transcription Map of Human Papillomavirus Type 18 during Productive Viral Infection . J Virol 85, 8080–8092.

Yang, R., Wheeler, C.M., Chen, X., Uematsu, S., Takeda, K., Akira, S., Pastrana, D.V., Viscidi, R.P., &

Roden, R.B.S. (2005). Papillomavirus Capsid Mutation To Escape Dendritic Cell-Dependent Innate Immunity in Cervical Cancer. J Virol 79, 6741–6750.

Zhang, W., Carmichael, J., Ferguson, J., Inglis, S., Ashrafian, H., & Stanley, M. (1998). Expression of Human Papillomavirus Type 16 L1 Protein inEscherichia coli:Denaturation, Renaturation, and Self-Assembly of Virus-like Particlesin Vitro. Virology 243, 423–431.

Zheng, Z.-M., & Baker, C.C. (2006). PAPILLOMAVIRUS GENOME STRUCTURE, EXPRESSION, AND POST-TRANSCRIPTIONAL REGULATION. Front Biosci 11, 2286–2302.

42

Kasutatud veebiaadressid

„293T cells“. GenHunter Corporation. Kasutatud 07. 05.2018.

http://www.genhunter.com/products/293t-cells.html

Addgene. Kasutatud 20.03.2018. https://www.addgene.org/37320/

„FDA Licensure of Bivalent Human Papillomavirus Vaccine (HPV2, Cervarix) for Use in Females and Updated HPV Vaccination Recommendations from the Advisory Committee on Immunization Practices (ACIP)“. Centers for Disease Control and Prevention. Kasutatud 7.

03.2018. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5920a4.htm

„HPV and Cancer“. CgvFactSheet. National Cancer Institute. Kasutatud 28. 04.2018.

https://www.cancer.gov/about-cancer/causes-prevention/risk/infectious-agents/hpv-fact-sheet

Novopro. Kasutatud 20.03.2018.

http://www.novopro.cn/resource/unzip/Fluorescent%20Protein%20Genes%20&%20Plasmids /pEGFP-N3%20Map.png

Production of Papillomaviral Vectors (Pseudoviruses). National Cancer Institute. Kasutatud 12.12.2017. https://home.ccr.cancer.gov/Lco/pseudovirusproduction.htm

The PapillomaVirus Episteme (PaVE). Kasutatud 03.05.2018. https://pave.niaid.nih.gov/

„What is GARDASIL®9 (Human Papillomavirus 9-valent Vaccine, Recombinant) ?“

Official site of gardasil 9 (human papillomavirus 9-valent vaccine, recombinanant). Kasutatud 07.05.2018. https://www.gardasil9.com/about-gardasil9/what-is-gardasil9/

43

LISA 1

Joonis 9. Plasmiidi p16SheLL kaart (https://www.addgene.org/37320/).

44

LISA 2

Joonis 10. Plasmiidi pEGFPN3 kaart

(http://www.novopro.cn/resource/unzip/Fluorescent%20Protein%20Genes%20&%20Plasmids/

pEGFP-N3%20Map.png).

45

LISA 3

Joonis 11. HPV11 minicricle genoomi kaart.

46

LISA 4

Joonis 12. HPV18 varajasi avatud lugemisraame sisaldav minicircle genoom.

47

Lihtlitsents lõputöö reprodutseerimiseks ja lõputöö üldsusele kättesaadavaks tegemiseks

Mina, Annika Laanemets (sünnikuupäev: 11.06.1996)

1. annan Tartu Ülikoolile tasuta loa (lihtlitsentsi) enda loodud teose

Inimese papilloomiviiruste kvaasi-ja pseudovirionide konstrueerimine ning nakatamisvõime analüüsimine U2OS ja 293FT rakuliinides, mille juhendaja on Marko Piirsoo,

1.1 reprodutseerimiseks säilitamise ja üldsusele kättesaadavaks tegemise eesmärgil, sealhulgas digitaalarhiivi DSpace-is lisamise eesmärgil kuni autoriõiguse kehtivuse tähtaja lõppemiseni;

1.2 üldsusele kättesaadavaks tegemiseks Tartu Ülikooli veebikeskkonna kaudu, sealhulgas digitaalarhiivi DSpace´i kaudu kuni autoriõiguse kehtivuse tähtaja lõppemiseni.

2. olen teadlik, et punktis 1 nimetatud õigused jäävad alles ka autorile.

3. kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi ega isikuandmete kaitse seadusest tulenevaid õigusi.

Tartus, 25.05.2018

Im Dokument TARTU ÜLIKOOL LOODUS (Seite 36-47)

ÄHNLICHE DOKUMENTE